
SOFTWARE-LIKE INCREMENTAL REFINEMENT ON FPGA

USING PARTIAL RECONFIGURATION

Dongjoon Park

A DISSERTATION

in

Electrical and Systems Engineering

Presented to the Faculties of the University of Pennsylvania

in

Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

2024

Supervisor of Dissertation Co-Supervisor of Dissertation

André DeHon Jing Li

Boileau Professor of Electrical and Sys-
tems Engineering

Eduardo D. Glandt Faculty Fellow and
Associate Professor of Electrical and
Systems Engineering

Graduate Group Chairperson

Troy Olsson, Associate Professor of Electrical and Systems Engineering

Dissertation Committee

Rahul Mangharam, Professor of Electrical and Systems Engineering
Jing Li, Eduardo D. Glandt Faculty Fellow and Associate Professor of Electrical and Systems
Engineering
André DeHon, Boileau Professor of Electrical and Systems Engineering

SOFTWARE-LIKE INCREMENTAL REFINEMENT ON FPGA

USING PARTIAL RECONFIGURATION

COPYRIGHT

2024

Dongjoon Park

ACKNOWLEDGEMENT

I am deeply grateful to Professor DeHon for his mentorship throughout my PhD journey. Under

his guidance, I have learned not only technical knowledge but also the skills of crafting academic

papers and presenting research to diverse audiences. I have gained so much knowledge in this field

and have gone through a one-of-a-kind PhD journey that I would have been able to experience

elsewhere. For the rest of my career, whenever I face a research challenge, my first question will

always be, "How would André approach this problem?" I am confident that this question will shed

light on the problem, recalling the many enriching discussions we shared over the past few years.

I am also thankful to Professor Li for her guidance when I struggled when I returned after a three-

year leave. Her encouragement helped me to rebuild my confidence and renew my focus on my

research. I would like to thank Professor Mangharam for his incisive feedback during my thesis

proposal, which strengthened my work and refined my final presentation.

I would like to thank IC group members, Rafi, Hans, Nick, Yuanlong, Syed, and Ezra. We shared

ideas, faced challenges, and supported each other. I hope our paths cross again in the future.

Lastly, I would like to thank my family who have patiently supported me every step of the way.

Their unwavering encouragement has helped me to persevere in the toughest moments. Thank you

for everything.

iii

ABSTRACT

SOFTWARE-LIKE INCREMENTAL REFINEMENT ON FPGA

USING PARTIAL RECONFIGURATION

Dongjoon Park

André DeHon

Jing Li

To improve FPGA design productivity, our goal is to create a development experience for FPGAs

that aligns closely with widely accepted software design principles. Software programmers quickly

test their minimally completed design, identify the bottleneck, and incrementally refine the design.

In FPGA design, however, such incremental refinement is not supported. (1) FPGA compilation is

long, (2) a minor refinement leads to another long compilation, and (3) FPGA developers cannot

easily identify a bottleneck of the design. We introduce a divide-and-conquer strategy in FPGA

compilation, proposing a fast separate FPGA compilation using a Network-on-Chip (NoC) and Par-

tial Reconfiguration (PR). This approach enables parallel and incremental FPGA compilation but

requires users to manually decompose designs into operators that fit fixed-sized pages. In this thesis,

we take the next step to support variable-sized pages using Hierarchical PR to provide flexibility

to the users. With variable-sized pages, users can decompose a design naturally, without careful

planning, enabling rapid hardware testing in a similar manner to how software programmers start

testing with a minimally functional prototype. In addition, we propose a bottleneck identification

scheme based on FIFO counters to provide profiling capability in FPGA design. Finally, we in-

troduce a fast incremental refinement strategy that integrates our fast compilation framework and

bottleneck identification scheme. The idea is to quickly map the design on the FPGA using the fast

compilation framework and incrementally refine the design based on our bottleneck identification.

The fast compilation with the NoC and PR pages iterates many initial yet important design points

quickly, and for the final, optimized design, our strategy migrates to the monolithic system that

does not have the area and bandwidth overhead of the NoC. Throughout the design tuning, we

iv

always have a hardware-mapped design whose performance we can measure to provide feedback to

the users or automation script to identify the next bottleneck. We evaluate our fast incremental

strategy with design tuning for realistic High-Level Synthesis applications. Our framework, fully

compatible with AMD Vitis, achieves 1.3–2.7× faster tuning time than a monolithic flow where the

vendor tool monolithically compiles each design point.

v

TABLE OF CONTENTS

ACKNOWLEDGEMENT . iii

ABSTRACT . iv

LIST OF TABLES . xi

LIST OF ILLUSTRATIONS . xii

CHAPTER 1 : INTRODUCTION . 1

1.1 Thesis . 1

1.2 Motivation . 1

1.3 Approach . 2

1.4 Contributions . 5

CHAPTER 2 : BACKGROUND . 7

2.1 Partial Reconfiguration . 7

2.2 Soft NoC and Hard NoC . 9

2.3 Compute Model . 10

2.4 Divide-and-Conquer in FPGA Compilation . 11

2.5 Pre-compiled Macros . 11

CHAPTER 3 : FAST AND FLEXIBLE FPGA DEVELOPMENT USING HIERARCHI-

CAL PARTIAL RECONFIGURATION . 13

3.1 Motivation . 13

3.2 Previous Work . 16

3.2.1 Using Partial Reconfiguration . 16

3.2.2 Using RapidWright . 19

3.2.3 Problems with Previous Work . 21

3.3 Variable-sized Pages using Hierarchical PR . 22

vi

3.4 Engineering Details . 26

3.4.1 Overlay Generation and Nested DFX . 26

3.4.2 Abstract Shell . 28

3.5 Evaluation . 29

3.5.1 New Overlay with Hierarchical PR pages . 31

3.5.2 Incremental Development Scenario . 34

3.5.3 Experiment Results for Rosetta Benchmarks 36

3.5.4 Bitstream Loading Time Overhead . 42

3.6 Discussion . 43

3.6.1 Overlay Generation . 43

3.6.2 Incremental Refinement . 44

3.7 Conclusions . 44

CHAPTER 4 : ENHANCEMENTS TO FAST COMPILATION FRAMEWORK 45

4.1 NoC Bandwidth . 45

4.1.1 Multiple NoC interfaces . 45

4.1.2 Merging . 46

4.2 Multiple Clock Frequencies . 47

4.3 Page Heterogeneity and Static Pblock . 48

4.3.1 Page Heterogeneity . 48

4.3.2 Static Routing over PR Pages . 48

4.4 Engineering Details in Overlay Generation . 51

4.4.1 Floorplanning . 51

4.4.2 Placeholder Modules in Partial Reconfiguration 52

4.5 Page Assignment Based on Recursive Bi-partitioning 52

4.6 isFit classifiers . 55

4.6.1 Motivation . 55

4.6.2 Training and Testing . 55

4.6.3 Limitations . 58

vii

4.7 Conclusions . 58

CHAPTER 5 : INCREMENTAL REFINEMENT AND BOTTLENECK IDENTIFICATION 59

5.1 Motivation . 59

5.2 Previous Work . 60

5.2.1 HLS Design-Space Exploration on FPGA . 60

5.3 Incremental Refinement Strategy . 61

5.4 Bottleneck Identification . 63

5.4.1 Stall Counters . 64

5.4.2 Full Counters . 64

5.4.3 Resource Usage . 65

5.4.4 Limitations . 66

5.5 NoC-based System and Monolithic System . 66

5.6 Automated DSE Case Study . 67

5.6.1 DSE Experiment Overview . 67

5.6.2 Greedy Tuner . 70

5.7 Evaluation . 73

5.7.1 Experiment Setup . 73

5.7.2 NoC-based Overlay and Monolithic Overlay 74

5.7.3 Implementation Directives . 74

5.7.4 DSE Time and Performance . 75

5.7.5 Compile Time Analysis . 84

5.7.6 Incremental Compilation . 85

5.8 Discussion . 86

5.8.1 Bottleneck Identification and Incremental Refinement Strategy 86

5.8.2 Synergy with a Model-based DSE . 87

5.8.3 Limitations of a Greedy Tuner . 88

5.8.4 Analysis on FIFO Counters . 88

5.8.5 Potential Limitations with the Operator-level Probing 92

viii

5.9 Conclusions . 103

CHAPTER 6 : ASYMMETRY IN BUTTERFLY-FAT-TREE NOC 104

6.1 Background . 104

6.2 Motivation . 106

6.3 Asymmetric BFT . 107

6.4 Methodology . 110

6.5 Evaluation . 112

6.5.1 Realistic Workloads . 112

6.5.2 Random Traffic . 114

6.5.3 t-random Switch . 115

6.6 Discussions . 115

6.6.1 More Design-Space for Soft NoC . 115

6.6.2 Limitations . 116

6.6.3 Integration with our NoC-based System . 117

6.7 Conclusions . 117

CHAPTER 7 : DISCUSSIONS . 118

7.1 Scalability . 118

7.2 Application Decomposition . 119

7.3 Hard NoC . 120

7.4 Vivado PR . 121

7.4.1 Identical PR Regions . 121

7.4.2 Partial Bitstream Relocation . 121

7.4.3 Stacking Multiple PR Regions within a Clock Region 122

7.5 FPGA Architecture . 122

7.6 Divide-and-Conquer to Achieve a Better Maximum Frequency 123

7.6.1 High-performance Static Design in PR . 123

7.6.2 Continuity between the NoC-based System and the Monolithic System 126

ix

7.7 Relationship with other Fast FPGA Compilation Studies 126

7.8 Future Work . 127

CHAPTER 8 : CONCLUSIONS . 130

APPENDIX A : FAST INCREMENTAL REFINEMENT DSE TRACES 133

BIBLIOGRAPHY . 137

x

LIST OF TABLES

TABLE 3.1 Resources Available in Different Hierarchical PR Pages 33
TABLE 3.2 Optical Flow Incremental Development with Hierarchical PR Pages 36
TABLE 3.3 Rosetta Benchmarks with Monolithic Vitis Flow (200MHz) 38
TABLE 3.4 Rosetta Benchmarks with PR Pages . 41
TABLE 3.5 Bitstream Loading Times for Full Applications 42

TABLE 4.1 Resources Available in Different Hierarchical PR Pages (CONTAIN_ROUTING true) 50

TABLE 5.1 Resource Utilization and DSE Results . 76
TABLE 5.2 Fast Incremental Refinement DSE Trace for Rendering† 79
TABLE 5.3 Summary of Experiment Results for FIFO counters 90

TABLE 6.1 Symmetric BFT-256s (S0, S1) and Asymmetric BFT-256s (AS0, AS1) Example
(52b, single flit packet) . 110

TABLE 6.2 Worst Negative Slack (ns) for Different Switch Types when Placed and Routed
on ZU9EG (Packet Size = 52b) . 111

TABLE A.1 Fast Incremental Refinement DSE Trace for Rendering 133
TABLE A.2 Fast Incremental Refinement DSE Trace for Digit Recognition 134
TABLE A.3 Fast Incremental Refinement DSE Trace for Optical Flow 134
TABLE A.4 Fast Incremental Refinement DSE Trace for Optical Flow‡ 135
TABLE A.5 Fast Incremental Refinement DSE Trace for CNN-1 135
TABLE A.6 Fast Incremental Refinement DSE Trace for CNN-2 136
TABLE A.7 Fast Incremental Refinement DSE Trace for CNN-3 136

xi

LIST OF ILLUSTRATIONS

FIGURE 1.1 High-Level Idea of Separate Compilation using NoC and PR 3
FIGURE 1.2 Fast Incremental Refinement Strategy on FPGA 5

FIGURE 3.1 Software Development Example . 14
FIGURE 3.2 FPGA (Hardware) Development Example . 15
FIGURE 3.3 Comparison between Related Work . 21
FIGURE 3.4 Hierarchical Pages, zoomed in . 22
FIGURE 3.5 Separate Compilation with Hierarchical PR Pages 24
FIGURE 3.6 Static Design Generation with a Sequential Subdivision in Nested DFX Tech-

nology . 27
FIGURE 3.7 Loading Multi-level Partial Bitstreams . 29
FIGURE 3.8 Optical Flow Application, Separately Compiled with Variable-sized Pages . . . 30
FIGURE 3.9 Incremental Refinements for Optical Flow . 37
FIGURE 3.10 Rosetta Benchmarks with Hierarchical PR Pages Mappings 42

FIGURE 4.1 Two Ways to Mitigate the Limited NoC Bandwidth Issue 46
FIGURE 4.2 Snapshots of NoC-based System’s PR Page . 48
FIGURE 4.3 Screenshot of the New Overlay . 51
FIGURE 4.4 Page Assignment Based on Recursive Bi-partitioning 54
FIGURE 4.5 isFit Overview . 56
FIGURE 4.6 Difference in Recall and Precision between Our Trained Classifiers and Classi-

fications Based on Hard Constraints . 57

FIGURE 5.1 NoC-based System and Monolithic System . 61
FIGURE 5.2 High-level Intuition of Bottleneck Identification using FIFO Counters 64
FIGURE 5.3 Bottleneck Identification with FIFOs . 65
FIGURE 5.4 Automated DSE Experiment Overview . 68
FIGURE 5.5 DSE Results for Rendering . 77
FIGURE 5.6 DSE Results for Digit Recognition and Optical Flow 80
FIGURE 5.7 DSE Results for CNN . 83
FIGURE 5.8 Visualization of Incremental Refinement Example (CNN-2) 84
FIGURE 5.9 Compile Time Breakdown . 85
FIGURE 5.10 Number of Parallel Incremental Page Compile Jobs in the NoC-based System . 86
FIGURE 5.11 FIFO Counter Analysis Experiment Setup . 89
FIGURE 5.12 FIFO Counter Analysis, datawidth = 32 . 93
FIGURE 5.13 FIFO Counter Analysis, datawidth = 64 . 94
FIGURE 5.14 FIFO Counter Analysis, datawidth = 128 . 95
FIGURE 5.15 An Operator with Sub-functions . 96
FIGURE 5.16 An Operator without Sub-functions . 96
FIGURE 5.17 An Example of a Feedback Loop between Operators 98
FIGURE 5.18 Cases with a Feedback Loop, Sub-functions with Different Latencies 99
FIGURE 5.19 Cases with a Feedback Loop, Sub-functions with Different Read/Write Rates 101

FIGURE 6.1 t switch and π switch . 105

xii

FIGURE 6.2 Symmetric BFT-16 with Different p Values . 105
FIGURE 6.3 Examples of Unbalanced Realistic Workloads after Partitioning 107
FIGURE 6.4 Example of Asymmetric BFT-256 . 108
FIGURE 6.5 16-8-2 Converging Switch Built with t Switches and t− random (t′) switches . 108
FIGURE 6.6 16-8-2 Converging Switch Built with only t Switches 108
FIGURE 6.7 (a): Throughput Comparison on Selected Realistic Benchmarks, (b): Through-

put Benefit (max(AS0,AS1)/max(S0,S1)) for Different Traffic Ratios (# of
messages ending in st-0,1/# of messages ending in st-2,3) in All Realistic
Benchmarks . 112

FIGURE 6.8 Throughput Comparison on Different Random Traffic Patterns 115
FIGURE 6.9 Benefit of t− random switches in Converging Switch for Test-1 116

FIGURE 7.1 A Conceptual View of High-performance Static Design in AMD U280 Device . 124
FIGURE 7.2 Future Direction with a Hard NoC and Fine-grained Operators 129

xiii

CHAPTER 1

INTRODUCTION

1.1. Thesis

Through the fast and flexible FPGA compilation using Hierarchical Partial Reconfiguration, FPGA

design-space exploration can be accelerated up to 2.7×, resulting in a final optimized design that is

comparable to the optimized design when design-space exploration is done with the vendor tool’s

monolithic compilation.

1.2. Motivation

No programmer builds a system in a single compilation. Software programmers generally develop

something that is barely functional and incrementally add functionality to complete their designs.

Incremental Refinement is a natural practice when building even a simple system and inherently

introduces many edit-compile-debug cycles. While Field-Programmable Gate Arrays (FPGA) are

known to be flexible and power-efficient so that FPGAs can potentially possess the best of the

both worlds of processors and Application-Specific Integrated Circuit (ASIC), a main limitation is

FPGA’s notoriously long compilation time. Compilation to CPU (Central Processing Unit) and

GPU (Graphics Processing Unit) takes seconds or at most minutes while compilation to FPGA

takes at least minutes and hours. What is worse is that even if a small function in an FPGA

design is modified, today’s FPGA vendor tools monolitically recompile the entire design; the tools

try to optimize the whole design instead of actively reusing the previously compiled design. This

monolithic FPGA compilation results in lengthy incremental compilation times, limiting the number

of design points that can be explored. In software, on the other hand, programmers only need to

recompile functions that have changed, and newly compiled object files are linked with the previously

compiled objects. Therefore, even if the size of the design increases, incremental compilation time

stays short.

Furthermore, when programmers incrementally refine their designs, they profile the design to identify

the bottleneck function that limits the performance of the system, improve the bottleneck, and

1

recompile the design to test whether the performance has improved. Not only the incremental

compilation in FPGA is lengthy, but also FPGA developers do not have probing tools to identify

the bottleneck. The lack of visibility in the hardware design results in a sub-optimal final design

and makes hardware development more challenging.

FPGA provides massive data-level parallelism and task-level parallelism. FPGA’s reconfigurability

provides flexibility that ASIC, which performs a single task in its entire lifespan, does not offer.

Because many of today’s applications require tremendous parallelism and power efficiency at the

same time, users of traditional computing chips like CPUs and GPUs have come to pay more atten-

tion to FPGA. The fast-changing characteristic of these applications makes FPGA more attractive

since ASIC cannot be changed after being manufactured, and manufacturing costs of ASIC are high.

However, the aforementioned limitations in today’s vendor tools prevent FPGA from becoming the

mainstream hardware platform, and in many industries, FPGA still stays as a mere glue logic for

different peripherals or ASIC emulator instead of being a computing device itself. Given that most

engineers are accustomed to incremental refinement in software development, it raises the question

of whether similar design principles can be applied to FPGA development.

1.3. Approach

To lower the entrance barrier for those who have never tried FPGA and to enhance the productivity

of experienced FPGA engineers, this dissertation aims to support software-like FPGA development.

A main hindrance in closing the gap between software development and FPGA development is the

long compilation time of FPGA design. A reason for the notoriously long compilation is that AMD’s

Vivado and Altera’s Quartus perform a monolithic compilation. To address the long monolithic com-

pilation from FPGA vendor tools, we adopt a divide-and-conquer strategy in FPGA compilation.

We split the FPGA device into multiple sub-regions and launch multiple FPGA compilation runs to

compile each sub-region in parallel. Separately compiled sub-regions are linked with a pre-compiled

packet-switched Network-on-Chip (NoC). The vendor tool compiles each sub-region monolithically,

but because the problem size decreases, the compilation is faster. As today’s vendor tool does not

fully utilize abundant cores in modern desktop CPUs or compute servers, we deliberately decou-

2

(a) Vendor tool(Vivado, Quartus)’s s

monolithic compilation

(b) Fast separate compilation

in parallel using NoC + PR

A NoC

Network-on-Chip(NoC)

A
B

C
D

“Operator”

Streaming

dataflow links

“Page”

A
B

C
D

(a) Vendor tool(Vivado, Quartus)’s slow

monolithic compilation

Figure 1.1: High-Level Idea of Separate Compilation using NoC and PR

ple sub-regions in a single FPGA device and perform separate compilations in parallel, explicitly

utilizing more cores. Realizing our vision relies on two key components: a NoC and Partial Re-

configuration (PR) technology. A NoC enables full virtualization, allowing any operator to send

and receive data from others. PR allows a partition of the design to be separately compiled. The

high-level idea of our approach is described in Figure 1.1. We define an operator as a logical stream-

ing computation block of the user design. In Figure 1.1’s example, the user design consists of four

operators, and these operators are connected with streaming links. The operators can be coded

in either Register-Transfer level (RTL) or High-Level synthesis (HLS). We define each page as a

physical partition of the FPGA device that operators will be mapped on, and these regions are

PR regions. As can be seen in Figure 1.1 (b), NoC interfaces are compiled along with operators in

designated pages. In Figure 1.1’s case, our approach should provide fast compilation because each

operator is compiled in parallel. In addition, with our system, only the changed operators can be

recompiled because we decouple the compilation for each operator in contrast to monolithic com-

pilation by the vendor tool where a minor fix in the design requires the recompilation of the entire

3

design. Our FPGA compilation approach is inspired by software compilation where each function

is compiled into a separate object file and linked together, allowing only the modified functions to

be incrementally recompiled.

Although our separate compilation approach shows the potential of software-like FPGA compilation,

the fixed-sized pages impose responsibility on the users to decompose a design into small operators

that can fit into fixed-sized pages. If the separate compilation framework has large pages to reduce

the user’s burden, then the compilation speedup decreases compared to the system with many

small pages. Therefore, we adopt Hierarchical Partial Reconfiguration technology to offer variable-

sized pages. With variable-sized pages, small operators can be mapped on single-sized pages as

done in the system with the fixed-sized pages. In addition, multiple single-sized pages can be

recombined to offer large pages so that large operators can also be mapped. Hierarchical pages

let the users start mapping their initial design quickly on hardware because the users can quickly

start from the natural decomposition of the design without considering the expected resource usage

of each operator. This flexibility enables the users to start from the barely functional design and

incrementally add functionality just like the users build software designs.

Furthermore, to support bottleneck identification in our separate compilation framework, similar to

software programming, we insert FIFO counters. Based on the number of full and stall counters after

application execution, the users get to have more visibility on the design mapped on the hardware

and identify the slowest operator in the design or whether the NoC bandwidth is a bottleneck at

all. With all components together, we propose a fast incremental refinement strategy (Figure 1.2).

We quickly map the design on the FPGA using our separate compilation framework, which consists

of a NoC and PR pages. Then, we identify a bottleneck one at a time based on hardware execution

results and refine the bottleneck operator to reduce the application runtime. The presence of NoC

could introduce area or bandwidth overhead to the design. Thus, when the design reaches the

point that it cannot improve in our separate compilation framework, we monolithically compile the

design on FPGA where FIFOs directly connect operators, and we keep FIFO counters for profiling.

The incremental refinement continues, identifying the bottleneck and improving the bottleneck

4

A C

B
D

E

A C

B D

E

Monolithic

Fast compile with NoC+PR

200MHz for all ops
350MHz

400MHz

200MHz

250MHz

200MHz

Figure 1.2: Fast Incremental Refinement Strategy on FPGA

operator. Our system is fully integrated with AMD Vitis acceleration flow [12]. Our solution

resembles software programming practices, providing an intuitive and natural design practice for

both software and hardware engineers. Our solution leverages FPGA’s reconfigurability, mapping

different design points incrementally and converging to a better design each step.

1.4. Contributions

• Using Hierarchical PR, we enhance the separate FPGA compilation framework with variable-

sized pages to add flexibility. Unlike prior works, the users do not need to decompose a design

into smaller operators to utilize the separate compilation framework. We show that variable-

sized pages improve application performance by 1.4–4.9× while still compiling 2.2–5.3× faster

than AMD Vitis.

• We further improve the separate compilation framework by supporting multiple NoC interfaces

to a single operator, multiple clock frequencies (200MHz–400MHz) for different operators, and

page assignment based on recursive graph bi-partitioning.

• We propose a fast, automatic runtime bottleneck identification scheme based on the FIFO

counters. We demonstrate that our incremental refinement strategy reduces application tuning

time by 1.3–2.7× compared to the monolithic flow. The fast FPGA compilation framework

integrated with the bottleneck identification scheme is released as open-source.1

1https://github.com/icgrp/prflow_REFINE

5

https://github.com/icgrp/prflow_REFINE

• To accommodate a variety of workloads in the fast compilation framework, we propose an

asymmetric Butterfly Fat Tree (BFT) NoC architecture to selectively provide more bandwidth

to specific sub-trees while using similar logic resources compared to traditional symmetric BFT

NoC. We show that in realistic workloads and statistical traffic patterns, asymmetric BFTs

achieve up to 32% and 76% more throughput than symmetric BFTs, respectively.

6

CHAPTER 2

BACKGROUND

In this chapter, we discuss the key elements of our fast FPGA compilation strategy: Partial Recon-

figuration (PR) and Network-on-Chip (NoC). We also explain the compute model underlying our

idea and the high-level overview of the divide-and-conquer strategy in FPGA compilation. Addi-

tionally, we review the related work on fast FPGA compilation using pre-compiled macros. This

dissertation assumes that readers are familiar with FPGA architecture and FPGA compilation pro-

cess. In this thesis, “synthesis” refers to logic synthesis, and “implementation” refers to the rest

of the FPGA compilation including placement, routing, and bitstream generation unless explicitly

stated otherwise.

2.1. Partial Reconfiguration

FPGA’s key differentiating feature from ASIC is that FPGA is reconfigurable. Users can con-

figure Look-Up-Tables (LUTs), Flip-Flops (FFs), on-chip Block RAMs (BRAMs), Digital Signal

Processing (DSP) blocks and programmable interconnect so that the circuit behaves like the hard-

ware design they want. Unlike ASIC, which requires substantial Non-Recurring Engineering (NRE)

costs, FPGA offers a fast time-to-market solution because FPGA can support arbitrary hardware

designs. FPGA’s reconfigurability also provides flexibility that ASIC does not offer, enabling users

to adapt designs to accommodate environmental or algorithmic changes. Partial Reconfiguration

(PR) is a technology that reconfigures only parts of an FPGA device while other parts of the design

are running.

PR is traditionally used to employ a system that is larger than the device because functions can

be time-multiplexed with PR. Also, when functionality needs to dynamically adapt at runtime, PR

can be used in loading appropriate pre-generated partial bitstreams while other parts of the design

are operating. PR can support virtualization to enhance productivity. For example, AMD’s Alveo

platform [6] consists of (1) static region where system peripherals and PCI Express (PCIe) IP are

implemented and (2) dynamic region where user kernels can be mapped. In this way, users do not

7

worry about software and hardware interfaces but can focus on designing hardware accelerators.

The partial bitstream for the compute kernel can be loaded while the remaining infrastructure

peripherals are still operating. As explained in Chapter 1, we use PR to separately compile each

partition of the device but do not dynamically reconfigure the device. If we strictly distinguish

dynamic reconfiguration and partial reconfiguration as done in [94], our usage belongs to partial

reconfiguration but not dynamic reconfiguration.

FPGA vendors support PR with their software [14, 5]. PR design consists of a static logic that

does not change and a reconfigurable logic that is partially reconfigured. In AMD Vivado’s PR,

also known as Dynamic Function eXchange (DFX), users first need to specify physical regions on

the device to be partially reconfigured (pblocks), link modules to the physical regions, and compile

the design. After place-and-route, users carve out modules that are mapped on PR regions. Then,

the remaining logic and routing are locked, and the remaining placed and routed design becomes

the static design. The interface points between the static logic and the reconfigurable logic are

called Partition Pins. On top of the static design, reconfigurable modules can be placed and

routed within the corresponding PR regions and are connected to Partition Pins. Finally, partial

bitstreams are generated accordingly. It is important to note that static logic can use routing

resources inside reconfigurable pblocks, but reconfigurable logic cannot use routing resources outside

the reconfigurable pblocks.2 If the static design uses too much of routing resources inside the PR

regions, the rest of the reconfigurable modules may not be successfully placed and routed to generate

partial bitstreams. Therefore, the rule of thumb is to use “the most challenging” module to create

the static design. Academic tools like [56, 86, 15] use a blocker macro that occupies the routing

resources of the designated area so that the vendor tool cannot use the routing resource in the

region. Altera Quartus’s PR consists of almost identical steps. In this thesis, we will mostly use

“PR” to refer Partial Reconfiguration instead of “DFX”. We will mostly use “PR region” to refer a

collection of cells that are set to be partially reconfigurable instead of “reconfigurable pblock”.
2To be more precise, AMD Vivado relaxes this constraint by introducing “expanded routing region”, and Altera

Quartus also has a routing region defined apart from a place region. But it is still true that reconfigurable logic
should not use routing resources outside of designated regions.

8

Hierarchical PR is also supported from FPGA vendors [14, 5] and an academic tool [55]. Hierarchi-

cal PR, also known as Nested DFX in AMD’s Vivado, provides multiple levels of reconfiguration.

For a given parent reconfigurable block, users can reconfigure the entire parent partition. Using

Hierarchical PR, this partition can be subdivided into multiple child reconfigurable partitions, de-

pending on the design requirements. We can also create grandchildren reconfigurable partitions,

and AMD PR user guide states that there is no formal limit on the depth of Nested DFX [14].

Alveo platform offers one large dynamic region for the compute kernel, but using Nested DFX, the

users can subdivide the dynamic region into multiple segments for more granular reconfiguration.

In Chapter 3, we take advantage of Hierarchical PR to support variable-sized pages for fast separate

compilation framework.

As explained above, to generate different partial bitstreams for a reconfigurable partition, we first

load a static design and implement the reconfigurable logic on top of the static design. In conven-

tional PR uses, partial bitstreams are prepared beforehand, so bitstream generation time in PR is

rarely addressed. In our case, we use PR to accelerate FPGA compilation and expect the bitstream

generation time is short for a small reconfigurable logic regardless of the size of the static design.

However, we observe that as the size of the static design increases, the compilation time increases

even if the task of Vivado is to compile the same-sized reconfigurable block [79, 99]. To mitigate

this issue, AMD introduces Abstract Shell [14], a minimal physical and logical database for each

reconfigurable partition, to explicitly remove unrelated parts of the static design when compiling

for a partial bitstream.

2.2. Soft NoC and Hard NoC

As the design size increases and routing becomes complicated, interconnect can introduce significant

overhead in area and energy [32]. A packet-switched Network-on-Chip (NoC) can be a solution to

the routing-dominated design, saving routing resources by sharing the NoC channels. Instead of

directly connecting different operators, operators can be mapped as processing elements, and they

can send packets to the NoC which delivers the packets to the correct destinations. This modular

design methodology not only eases the application development, providing a higher level abstraction

9

view, but also relaxes routing difficulty because complicated routing is replaced with a simple linking

of the NoC. Although a NoC costs resources that could otherwise be used in computation, FPGA

NoC often results in a design running at a superior clock frequency.

FPGA vendors have recently provided a “Hard” NoC, an embedded NoC on the FPGA [35, 89, 3, 44],

and researchers have long studied “Soft” NoC, an overlay NoC built on top of the commercial

FPGA [52, 76, 43, 50, 61]. Hard NoC usually provides higher performance in terms of bandwidth,

latency, and area than soft NoC [107]. However, soft NoC provides more flexibility in customizing

the NoC to the user designs. For example, users can select the NoC topology and the number of

nodes when the NoC is mapped on top of the programmable logic.

2.3. Compute Model

As shown in Figure 1.1, we assume that the application can be decomposed into an array of oper-

ators connected with streaming dataflow links [47, 22, 33]. In dataflow architecture, operators can

start computations immediately when the data are ready. The handshaking protocol in dataflow

typically consists of data, valid, and ready. A valid signal indicates that the data is ready from

the producer side, and the ready signal indicates the consumer is ready to receive the data. The

streaming compute model reduces the complexity of the design because operators can be developed

independently, reducing the problem size. As long as each operator follows the handshaking pro-

tocol of dataflow links, each operator does not need to know the details of communication channel

or implementations of other operators. The streaming compute model also promotes reusability

because in contrast to conventional cycle-based hardware designs where each computation should

occur at specific cycle, the implementation of previously used operators can be reused with a proper

computational pipeline in different applications. Additionally, the streaming dataflow approaches

can improve the achieved operating frequency by decoupling the implementations of operators. The

reduced design complexity, increased reusability, and higher operating frequencies together make

the streaming compute model as a scalable solution as the device size grows.

10

2.4. Divide-and-Conquer in FPGA Compilation

The motivation behind adopting the divide-and-conquer strategy in FPGA compilation is that to-

day’s FPGA vendor tool does not exhibit enough parallelism to utilize abundant cores in a multicore

workstation or a compute server when compiling the design. The divide-and-conquer strategy en-

ables the tool to utilize more available cores effectively, and the smaller problem size leads to shorter

compilation times. It is difficult to accurately characterize the factors contributing to FPGA com-

pilation time and their impact, but we expect that FPGA compilation time scales at least linearly

with the size of the design. Compilation time could be a superlinear function of the size of the

design if the vendor tool’s implementation algorithms handle small designs well but face increasing

challenges as the design size grows. For example, the number of moves in the VPR’s placer based

on simulated annealing with the O(N4/3) [74] when N is the number of the blocks to place. The

Pathfinder algorithm [73] used in VPR’s router initially allows multiple signals to use the same

routing resources routing resources temporarily. Then, the algorithm resolves the congestion by

making popular routing resources more costly so that in the next iteration, signals are discouraged

to use these routing resources. Because Pathfinder algorithm iterates all the signals, it scales at

least linear to the number of nets in the design, and because of repeated rip-ups and re-routing,

routing runtime scales superlinearly for complicated designs.

In reality, with today’s commercial FPGA tools, there should be multiple factors contributing to

compilation time including the size of the device, the size of the design, the target frequency, the

depth of the logic, resource compositions of the design, and routing complexity. In our divide-

and-conquer strategy, we decompose a large problem into smaller problems that can be solved

independently, and the compilation time is the maximum of all parallel compile runs.

2.5. Pre-compiled Macros

One methodology to accelerate FPGA compilation is to use pre-compiled “macros”. Instead of

mapping designs into small primitives like LUTs, FFs, BRAMs, and DSPs every time, researchers

have explored preparing pre-routed macros and translating the FPGA compilation problem into

assembling these macros. This approach simplifies the compilation process but is likely to result in

11

suboptimal designs. HMFlow [64] adopts this approach, simplifying the FPGA mapping problem

into stitching the pre-compiled macros. In stitching, authors use RapidSmith [65], an open-source

CAD tool that provides APIs for Xilinx Design Language (XDL) to manipulate Xilinx FPGA

designs. Benchmark designs used in HMFlow range from 150 Slices to more than 23K Slices (in

Xilinx Virtex 4 devices, there are two 4-input LUTs in a Slice), and the number of macro instances

per benchmark ranges from 21 to more than 1400. Compilation time for HMFlow is from 1–129

seconds, which is 9.2–50× faster than the commercial tool. Similar to HMFlow, in BPR [26],

authors use pre-compiled macros to reduce FPGA compilation time. In contrast to HMFlow which

saves relatively small primitives in the library, BPR stocks coarse-grained cores, thereby achieving

higher speedup. BPR achieves less than 3 seconds of compilation for the designs, which the vendor

tool takes 9–139 seconds to compile. Recently, DynaRapid supports a fast C-to-Routed design

compilation with pre-compiled dataflow compute blocks [38]. Authors pre-route a library of HLS

circuits generated by a dynamic HLS tool called Dynamatic [46]. For benchmarks, ranging from

500 to 9500 LUTs, DynaRapid reduces 500 seconds of compilation time by the vendor tool to 15–50

seconds (excluding bitstream generation time). In [70], authors provide an overlay that consists

of 2×2 or 3×3 PR regions of which size is 9600 LUTs. The idea is to prepare a stock of partial

bitstreams in the bitstream repository, and the interpreter dynamically assembles partial bitstreams

according to programming patterns defined in their Domain Specific Languages. Because they

replace compilation with assembling partial bitstreams, their approach takes less than 5 seconds to

output valid designs.

A problem with the approach using pre-compiled macros is that the user design is limited to the

combinations of the pre-defined macros. In this thesis, we take the next step to accelerate compi-

lations of arbitrary user designs using divide-and-conquer strategy.

12

CHAPTER 3

FAST AND FLEXIBLE FPGA DEVELOPMENT USING HIERARCHICAL PARTIAL

RECONFIGURATION

In this chapter, we begin by reviewing parallel and incremental compilation in software with an

example. We then review how today’s FPGA compilation is different from software compilation.

We discuss the prior efforts to support separate compilation on FPGA using fixed-sized pages

and their limitations. Then, we explain how our approach using Hierarchical PR resolves the

related issues with fixed-sized pages. This chapter was previously published in [Dongjoon Park,

Yuanlong Xiao, and André DeHon. Fast and Flexible FPGA Development using Hierarchical Partial

Reconfiguration. International Conference on Field-Programmable Technology. 2022.] [78]. I led

the project and was in charge of the system implementation.

3.1. Motivation

Let us review software program development first and investigate whether the same practice can

be applied in hardware development. Figure 3.1 illustrates a software development scenario. We,

as software programmers, usually start with a simple design that is not fully functional but has

appropriate placeholders (Figure 3.1 (a)). This is because having a simple yet stable foundation

eases the debugging, reduces the risk, and lets the developers focus on the core functionality of the

design. In software, these initial source codes can be compiled and assembled in parallel to object

files as shown in Figure 3.1 (b). The object files are linked together to generate an executable file.

Then, the rest of the design process is incremental. Programmers can add a new functionality as

shown in Figure 3.1 (c),(f), or they can refine the existing function as shown in Figure 3.1 (d),(e).

In software compilation, only the changed functions need to be recompiled because we already have

object files for the unchanged functions. New or refined functions are compiled and simply linked

together with the existing object files. Thus, even if the program becomes large, the incremental

compilation stays short.

Let us take a look at how FPGA (hardware) development is different from software development.

13

A.cpp

B.cpp

A.o

B.o

Linker Executable

C.oC.cpp

A.cpp

B.cpp

A.o

B.o

Linker Executable

C.oC.cpp

A.cpp

B.cpp

A.o

B.o

Linker Executable

C.oC.cpp

D.oD.cpp

A’.cpp

B.cpp

A’.o

B.o

Linker Executable

C.oC.cpp

D.oD.cpp

A’.cpp

B’.cpp

A’.o

B’.o

Linker Executable

C’.oC’.cpp

D.oD.cpp

A’.cpp

B’.cpp

A’.o

B’.o

Linker Executable

C’.oC’.cpp

D.oD.cpp

E.oE.cpp

F.oF.cpp

(a) Step 1 – Initial Design (b) Step 2 – Parallel Compilation

(c) Step 3 – Incremental Refinement (d) Step 4 – Incremental Refinement

(e) Step 5 – Incremental Refinement

(f) Step 6 – Incremental Refinement

Figure 3.1: Software Development Example

14

A

C

B

D’ E

A

C

B

D’ E

A

C

B
D E

(a) Parallel Compilation not supported

(b) Incremental Refinement not supported

A

C

B

D’ E

- What we want:
Only D’s PnR
changes

- Reality:
PnR of entire
design changes

FPGA device

Figure 3.2: FPGA (Hardware) Development Example

15

A, B, C, D, and E in Figure 3.2 are operators of a dataflow application written in synthesizable RTL

or HLS. Small rectangles in the FPGA device shown in Figure 3.2 represent primitives like LUTs,

FFs, BRAMs, or DSPs, and used elements are colored with the same color as the corresponding

operators, A–E. The logic synthesis phase can be parallelized with a modern vendor tool like AMD

Vivado; each operator (A–E) can be synthesized in parallel, and the stitching process is not time-

consuming. Nonetheless, in place-and-route, FPGA vendor tools try to optimize the design as a

whole (Figure 3.2 (a)). Unfortunately, parallel place-and-route is not supported by the commercial

tool even if operators are independent of each other. In addition, users cannot selectively recompile

one function, leaving the rest of the design to stay the same. For example, in Figure 3.2 (b), we

refine operator D. We want to change the placement and routing of only the changed function

(D), actively reusing the previously compiled results to reduce iterative compilation time, similar

to software compilation. Nevertheless, with today’s vendor tool, the entire design is monolithically

recompiled, leading to a long compilation time for every modification to the design. The bottom

case of Figure 3.2 (b) illustrates the monolithic compilation of the modern FPGA tools, and the

placement of every function is slightly different from the first PnR result in Figure 3.2 (a) even if D

is the only function that has changed.

3.2. Previous Work

In this section, we review the related work on split FPGA compilation including our works that

utilize PR and others that utilize RapidWright [63].

3.2.1. Using Partial Reconfiguration

Related Work

[79] is the pioneering work that first proposes separate compilation strategy using a pre-routed

packet-switched NoC and PR. We specifically adopt deflection-routed Butterfly Fat Tree (BFT) for

the NoC as it is shown to be lightweight and efficient on FPGA [48]. As stated in Section 1.3, the

main idea is to divide a large problem into multiple smaller problems. An application is decomposed

into multiple operators, and each operator is mapped on a PR page along with the NoC interface.

In [79], an array of 31 MicroBlaze processors [102] is chosen as a case study. We have three different

16

configurations of MicroBlaze processors that range from around 1400 LUTs to 2700 LUTs, and the

size of PR pages is around 3900 LUTs. Our framework enables 31 Vivado compilation runs in

parallel (one compile run per each MicroBlaze processor), and the compilation time of our system

is the maximum of the 31 parallel runs. As our approach explicitly uses more cores to compile the

same design, it takes only 418 seconds to implement (placement, routing, and bitstream generation)

the array of 31 MicroBlaze processors while the vendor tool’s monolithic compile takes 1797 seconds

to implement the design, which is more than 4× longer than our approach in the implementation

phase. This work is followed by [99] with characterization of Vivado compilation times and more

realistic applications from Rosetta benchmarks [109]. The size of benchmarks ranges from 11472

LUTs to 78381 LUTs, and the size of PR pages ranges from 5760 LUTs to 9120 LUTs. In [99],

we can achieve up to 8.9× compilation speedup compared to the monolithic compilation of Xilinx

Vivado. The reason why we do not achieve an order of magnitude compilation speedup is that

compilation time is not perfectly linear to the size of the design. Also, reading a static design or a

synthesized operator (read_checkpoint) in PR costs about 2 minutes of overhead in [99].

While a pre-routed NoC provides a complete virtualization for all the operators, it imposes limited

bandwidth between operators. In [96], Xiao et al. improve bandwidth between operators by directly

connecting operators through switch boxes. Extending [79, 99, 96], inspired by software compilation,

Xiao et al. propose different compile options like -O0, -O1, and -O3 for FPGA in PLD [98]. These

options provide different FPGA design points that trade off between performance and compilation

time. -O0 is an option where users can quickly test their designs on RISC-V processors mapped on

FPGA, and because the design runs on soft cores, -O0 results in a design with low performance in

exchange for seconds of compilation time. -O1 is an option for a separate compilation approach with

a pre-compiled NoC and PR presented in [79, 99]. This approach supports fast compilation, but

the NoC could introduce a bandwidth bottleneck, potentially resulting in sub-optimal performance.

-O3 is equivalent to the vendor tool’s monolithic compilation where operators are directly connected

with each other. With -O3, there is no limited bandwidth from the NoC (-O3), but the compilation

time is much longer. In a theoretical scenario, users may want to quickly (seconds) run their designs

on the software cores with -O0. Then, they can use -O1 to map the design on hardware (minutes,

17

still much faster than monolithic compilation from vendor tools). For the final design, users can use

-O3 to remove the area and bandwidth overhead of the NoC for optimal performance.

[79, 99, 96, 98] are all top-down approach that uses PR. Users pay a cost upfront, the time to generate

a static design in PR, or they can use the overlay generated by us. Once the users have an overlay

that consists of a NoC and PR regions, a compilation for each operator is entirely decoupled from

each other. When all the partial bitstreams are generated, they can be simply loaded along with

the bitstream for the static design. This approach accelerates all the phases of FPGA compilation:

HLS, logic synthesis, placement, routing, and bitstream generation.

NoC Interface

In [79, 99, 98], a NoC interface is compiled along with a user operator on a PR page. In a NoC

interface, there is a single input port from the NoC and a single output port to the NoC, but an

operator could have multiple input streams or output streams. A NoC interface includes registers

to store information about where the input port is receiving data from and where the output port

is sending data to. The input data to the NoC interface is parsed and stored in the appropriate

reorder buffer to handle packets arriving out-of-order because of the deflection-routed scheme. The

output packet is created with the source and destination information of the page, sequence bits for

the reorder buffer, and the data for the computation. A NoC interface also has an arbiter unit that

orchestrates the data from the multiple output ports of the operator to the limited output channel

of the page.

The number of 36Kb BRAMs in a NoC interface scales with the input ports, I, and output ports,

O. 3

36Kb BRAMs related to input ports = 2× I +

I∑
i=1

INPUT_WIDTHi

PAY LOAD_WIDTH
× 0.5 (3.1)

36Kb BRAMs related to output ports =
O∑
i=1

OUTPUT_WIDTHi

PAY LOAD_WIDTH
× 0.5 + 1 (3.2)

3The implementation of the NoC interface has slightly changed over time. The Equation 3.1 and Equation 3.2 are
based on [77], the most recently published work.

18

In Equation 3.1, 2× I is from two dual-port BRAMs for the reorder buffers. After the packets are

reassembled in these buffers, the input data is transmitted in order through a FIFO, corresponding

to 0.5 in Equation 3.1. INPUT_WIDTHi

PAY LOAD_WIDTH accounts for the differences in the payload size in the

NoC packets and the width of the input data stream. In Equation 3.2, 0.5 is for the output FIFO,

and OUTPUT_WIDTHi

PAY LOAD_WIDTH accounts for the differences in the payload size in the NoC packets and the

width of the output data stream. The last +1 in Equation 3.2 is the arbiter FIFO that sends one

output packet at a time when there are multiple output ports. The number of LUTs also scales

with the number of input ports and the number of output ports. A NoC interface consumes a

few hundred LUTs to a little over a thousand LUTs depending on the number of input ports and

output ports [99]. Please refer to [99, 95] for more details of a NoC interface architecture. Major

modifications in the NoC interface will be explained in this chapter and Chapter 4.

Out-of-Context Implementation Flow

Vivado’s Out-of-Context (OoC) implementation flow is another candidate, other than PR, to sup-

port separate compilations in FPGA. In Hierarchical Design flow with OoC implementation [104],

separate IPs are developed independently and later collected from the top level. Similar to PR,

users define input and output ports (Partition Pins) for each module. With these ports defined,

each module can be separately placed and routed. However, unlike PR, these routed designs are im-

ported from the top level, and there is a final implementation that integrates them. Unfortunately,

this seemingly simple top-level integration leads to a lengthy process, comparable to the runtime of

a monolithic compilation runtime from scratch. This flow promotes a “team design” where separate

IPs are developed by different teams and integrated later on. Hierarchical Design flow [104] may

achieve a better operating frequency as Vivado can focus on optimizing a smaller problem indepen-

dently. However, this flow is not suitable for reducing compilation time with a divide-and-conquer

because of the time-consuming, final implementation.

3.2.2. Using RapidWright

Thomas et al. [91] challenge the long compilation time by copying and pasting a small identical

Processing Unit (PU). They create connectivity shells and compile one PU for a slot. A connectivity

19

shell is a pre-implemented, domain-specific infrastructure that provides empty slots for PUs to be

replicated. Then, they use RapidWright [63, 62] to replicate routed PU to different slots. Rapid-

Wright is an open-source framework that enables design manipulations that are not supported or

not trivial to achieve in AMD Vivado. In [91], authors reduce 80–120 minutes of vendor tool’s com-

pilation to about 10 minutes, including about a minute for RapidWright to perform a replication of

PUs. The connectivity shell used in the evaluation has 180 PU slots, and the size of the PU slot is

960 LUTs.4 The copy-and-paste approach is inherently limited to an application with identical PUs.

Also, as authors mention in [91], for UltraScale+ device that has highly heterogeneous columnar

resource distribution, their approach results in area wastage because the PU slots must be identical

for one routed PU to be copied and pasted. [91] belongs to a top-down approach, as a connectivity

shell is pre-generated, and then PUs can be inserted after being compiled. Bitstream generation

is not accelerated because [91] generates a monolithic bitstream whereas bitstream generation is

accelerated with the approaches using PR because they generate partial bitstreams.

Guo et al. propose RapidStream [41], a compilation framework using RapidWright. They also

perform a divide-and-conquer, mapping processing elements to islands whose sizes are about 2×2

clock region and compiling them separately in parallel. Anchor registers are placed between islands

to provide timing isolation. Authors stitch separately implemented islands together using Rapid-

Wright. They achieve 5–7× compilation speedup over the commercial tool and improve the max

frequency up to 1.3×. Unlike previous works that use PR [79, 99, 96, 98] or [91], RapidStream

undergoes a top-level stitching process as it employs a bottom-up approach. In evaluation, the

stitching process using a fast open-source router [110], which alone takes about half an hour, im-

plies that this step could be a potential bottleneck to the compilation speedup. The size of the

island (more than 50K LUTs) is bigger than the size of the PR pages (about 4K LUTs in [79], about

8K LUTs in [99], about 20K LUTs in [98]) in [79, 99, 98]. Large islands or large pages diminish the

benefit of separate compilations, and in a bottom-up approach like [41], small pages could lead to

an even longer stitching phase. In [40], authors show their work-in-progress effort to adopt PR to
4Authors report each PU slot has 30×4 logic slices. Because AMD UltraScale+ device has 8 LUTs in a slice, each

PU is expected to contain 960 LUTs available.

20

(a) PR with NoC (Small pages) (b) RapidStream (Large Pages) (c) This Chapter (Hierarchical Pages)

Single, Double, Quad PR Page
PR Page Island Anchor

Figure 3.3: Comparison between Related Work

reduce the time spent in the stitching phase. RapidStream does not accelerate bitstream generation

because it generates a monolithic bitstream.

3.2.3. Problems with Previous Work

A common challenge from previous work on separate FPGA compilation in Section 3.2.1 and Sec-

tion 3.2.2 is that the operators are mapped in the fixed-sized pages. [79, 99, 98] belong to Figure 3.3

(a). Authors create small PR pages to achieve better speedup in the separate compilation strategy.

However, it is the user’s responsibility to manually divide an application into small operators. To

use the fast compilation framework with the fixed-sized pages, the users need to have some idea of

how operators are synthesized and implemented because if operators require more resources than

those available in the PR pages, operators cannot be mapped. This careful decomposition prevents

the users from rapidly testing their designs on hardware. This limitation also makes it difficult for

HLS developers without a hardware background to use our fast compilation. Some application needs

to be unnaturally decomposed to be mapped on small pages. Unnaturally decomposed operators

refer to operators that logically belong to a single function but are decomposed to fit small PR

pages. Such decomposition could lead to excessive communication over the NoC.

RapidStream [41] belongs to Figure 3.3 (b). RapidStream uses larger islands, relieving the user’s

responsibility to decompose a design into fine-grained operators. Nonetheless, large islands limit

21

(a) PR with NoC (Small pages) (b) This Chapter (Hierarchical Pages)

Figure 3.4: Hierarchical Pages, zoomed in
Note: Four single-sized pages are shown in both cases.

the compilation speedup in parallel compilation strategy. Furthermore, the global stitching time is

already non-negligible and is expected to grow if the size of the islands decreases.

[79, 99, 98] use PR and does not have the global stitching process, but fixed-sized PR pages make it

difficult for users to use the fast compilation framework. An approach using RapidWright to stitch

separately compiled islands could provide more flexibility in the granularity of separate compilation,

but small islands will likely to result in a long stitching phase. Therefore, we want to use PR with

variable-sized pages. If a design can be regularly decomposed into small operators, we will use small

PR pages for all operators. If it is natural to have a large operator, we will use a large PR page for

the operator.

3.3. Variable-sized Pages using Hierarchical PR

To support variable-sized PR pages, we use Hierarchical PR [14], which was first introduced in AMD

Vivado version of 2020.1. Previous works using PR to support separate compilation [79, 99, 96, 98]

use a single level of PR, but in this work, we create multi-level PR pages to provide more flexibility.

Using Hierarchical PR, we create a separate compilation framework whose small PR pages can be

recombined to form larger PR pages. Based on post-synthesis resource utilization estimates, our

framework assigns the appropriately sized PR page for each operator, significantly reducing the

user’s burden of designing operators to fit in fixed-sized pages. While users can enjoy the benefit of

fine-grained separate compilation with single-sized pages so that they can achieve high compilation

22

speedup, users are not forced to decompose a design into small operators because single-sized pages

can be recombined to offer double-sized pages or quad-sized pages. The new separate compilation

system using Hierarchical PR is shown in Figure 3.3 (c). Figure 3.4 compares fixed-sized pages

and variable-sized pages. We first create a larger, upper-level PR page and subdivide the page into

smaller pages. Both Figure 3.4 (a) and Figure 3.4 (b) have four single-sized pages in the subtree,

but in Figure 3.4 (b), these single-sized pages can form two double-sized pages or one quad-sized

page.

Figure 3.5 illustrates the flow of the new separate compilation framework with variable-sized PR

pages. We build upon [98], and our framework is fully compatible with AMD Vitis acceleration

flow [12]; the interfaces between the host and the kernels are abstracted out, and with only HLS

source codes and the host code, an application can run on the hardware. Each operator should

have its own HLS source file, and as shown in Listing 3.1, an operator should have inputs and

outputs defined in Vitis HLS Streams, hls::stream [13]. Then, our framework launches separate

HLS runs with Vitis HLS and separate logic synthesis runs with Vivado as done in [79, 99, 98]. The

difference is that once all logic synthesis runs are finished, our page assignment algorithm assigns

an appropriate page to each operator based on each operator’s post-synthesis resource estimates,

including expected utilization of LUTs, BRAMs, and DSPs. Then, a synthesized netlist for each

operator can be placed and routed on the assigned PR page, and partial bitstreams are generated

in the xclbin file format [12] accordingly.

23

test

A.cpp

H
ig

h
-L

e
v
e

l-
S

y
n

th
e

s
is

,

L
o

g
ic

 s
y
n

th
e

s
is

B.cpp C.cpp D.cpp

Page Assignment

P
la

c
e

/R
o

u
te

/B
it
-g

e
n

a
L

o
a

t
P

a
rt

ia
l
B

it
s
tr

e
a

m
s

a

a

Figure 3.5: Separate Compilation with Hierarchical PR Pages

24

1 void sample (
2 hls::stream <ap_uint <64>> & Input_1 ,
3 hls::stream <ap_uint <32>> & Input_2 ,
4 hls::stream <ap_uint <128>> & Output_1 ,
5)
6 {
7 #pragma HLS INTERFACE axis register port=Input_1
8 #pragma HLS INTERFACE axis register port=Input_2
9 #pragma HLS INTERFACE axis register port=Output_1

10
11 // your code
12
13 }

Listing 3.1: Example of an HLS Source Code for an Operator, sample, with Streaming Interfaces

The page assignment algorithm in this chapter ([78]) is as simple as (1) sort operators in the

descending order of their size and (2) pick the smallest page that accommodates each operator.

We define the size of an operator as LUTop/LUTtotal + BRAMop/BRAMtotal +DSPop/DSPtotal,

when LUTtotal, BRAMtotal, and DSPtotal refer to the total each resource available in the device.

This simple mechanism can reduce both external fragmentation and internal fragmentation. By

prioritizing the mapping of a larger operator, we can prevent two small operators from being assigned

to separate single-sized pages with different double-sized parent pages, which would otherwise block

the larger operator from obtaining a valid double-sized page mapping (external fragmentation). By

assigning to the tightest page to an operator, we minimize the unused space within the page, leaving

as much space as possible to other operators that still need to be mapped (internal fragmentation).

This capacity-based page assignment, however, does not consider the locality of operators. Later

in Section 4.5, we introduce a page assignment algorithm based on graph bi-partitioning. Also, in

Section 4.6, instead of using hard constraints to determine whether a netlist could be successfully

mapped or not, we train a classifier to make a decision, hoping to reduce internal fragmentation.

Similar to [99, 98], the user inputs include the graph file for the application in addition to a source

code per operator. The graph file is a simple wrapper function that users use to instantiate all the

operators; users would need this file for their design regardless of using our framework or not. Our

script parses the wrapper file, and it uses the interconnection information in the page assignment

25

step and when configuring destination page and source pages in the NoC interfaces.

We evaluate our new fast and flexible FPGA compilation framework with AMD Vitis Embedded

platform [12], equipped with ARM Processing System. The host code running on the ARM core is

responsible for sending data to and receiving data from the programmable logic. In our framework,

an application starts with the NoC configuration packets sent from the host to each page. These

packets configure registers in the NoC interfaces so that all input and output ports of all the pages

know where to send the data to and receive the data from. Then, the host sends the data for the

computation to a DMA operator, one of the operators that is responsible for receiving data from

the host and sending the computation results back to the host. When the host receives all the data

back after computation, the program ends, and we report the application latency, defined as the

runtime from the start to the end of the application for a given set of input data.

In this work [78], we support source codes of HLS. However, because our framework uses HLS-

generated RTL sources for the inputs for Vivado’s logic synthesis, RTL sources can be easily sup-

ported with minor modifications in the tool flow.

3.4. Engineering Details

As application engineers, users who want to enjoy the fast compilation with our framework do

not need to know how to generate the static overlay. They only need to provide an HLS source

code per operator, and our framework automatically compiles each operator separately in parallel.

Nevertheless, for those who are interested in generating a custom overlay for separate compilation

and our experience with Nested DFX [14], we share engineering details in this section.

3.4.1. Overlay Generation and Nested DFX

AMD Embedded DFX Platform and AMD Alveo Data Center Platform [103, 6] use PR to abstract

out implementation details on data transfer from the host to the programmable logic. These plat-

forms consist of a dynamic region for the user kernel logic and a static region where a pre-routed

interconnect or peripherals are mapped. Creating a PR page on these platforms already requires the

use of Hierarchical PR (Nested DFX) because we would be creating a second-level PR region (level

26

(a) First subdivision (b) Second subdivision (c) Third subdivision (d) 17th subdivision

Figure 3.6: Static Design Generation with a Sequential Subdivision in Nested DFX Technology

2 PR regions) inside a dynamic region (level 1 PR region). For example, PLD [98] uses Nested DFX

technology to create PR pages in the dynamic region of AMD Alveo U50 Data Center platform [6].

In this chapter ([78]), we take a step further to create deeper-level PR regions and recombine them

when necessary to provide flexibility in the sizes of PR pages.

In AMD’s Nested DFX technology, a PR region is subdivided into smaller PR regions, to which new

modules are linked and implemented. It is important to note that when there are multiple PR regions

to be subdivided, one PR region needs to be subdivided at a time [14]. For example, Figure 3.6

shows the screenshots of the routed design after each subdivision in our experiments. Figure 3.6 (a)

shows the routed design after the first subdivision. The orange-highlighted cells, narrowly placed

at the bottom, represent the static logic of the ZCU102 DFX platform. We modified the dynamic

region of the officially released platform [103] to allocate more area for a user application. The cyan-

highlighted cells represent our soft NoC and Vitis-generated logic that supports the host and kernel

data transfer. We subdivide the large dynamic region into five quad-sized pages and one double-

sized page, and after the first subdivision, newly created PR pages are 2nd-level DFX regions.

Figure 3.6 (b) shows that one double-sized page is subdivided into two single-sized pages, and these

single-sized pages are 3rd-level DFX regions. As stated earlier, we need to subdivide one PR region

27

at a time. Even if we have 5 independent quad-sized pages to be subdivided, we subdivide one PR

region and then move on to the next PR page. It is important to ensure that in Vivado, parent-

children relationships for Nested DFX regions are set as desired. Figure 3.6 (d) shows the static

design after 17 sequential subdivisions.

The numerous sequential top-level implementations required to generate the static design in the

Nested DFX flow make it more challenging to create a static design compared to the single-level

DFX flow. The implementation becomes more difficult as the depth of the DFX grows. Additionally,

there is a risk that at least one of the sequential implementations may fail. In such a case, we should

try manually routing the failed nets. We may need to try different constraints to guide the range

of Partition Pins or different implementation directives. We may have to try different floorplanning

for PR regions, starting over the sequential top-level implementations.

After we generate Figure 3.6 (d), we recombine subdivided PR pages, removing the lower-level re-

configurable partition definitions and restoring the parent reconfigurable partition definition. Then,

we generate the partial bitstreams for the parent PR regions, the context partial bitstreams needed

in Nested DFX flow. In Nested DFX flow, we need to load the partial bitstreams in the upper levels

first to set up the context and then load the partial bitstreams in the lower levels. Figure 3.7 shows

the example of loading multi-level bitstreams. Purple-ish blocks are recombined partial bitstreams

necessary to set up the proper context. Orange and yellow blocks are partial bitstreams for user

operators mapped on PR pages. A blue block indicates a NoC. Figure 3.8 shows the example of an

application mapped with our new variable-sized PR pages. 9 operators are mapped on single-sized

pages, and one large operator is mapped on a quad-sized page.

3.4.2. Abstract Shell

As discussed in Section 2.1, a larger size of static design leads to a longer compilation time in

AMD Vivado’s PR technology. Previously in [99], we characterize compilation time for the identical

reconfigurable module on the same PR region, changing only the size of the static design. The size

of the design mapped on the PR page is the same among all experiments, so the task size of Vivado

implementation runs should be the same, placing and mapping the same sample design into the

28

(a) Sample app (b) Step 1 (c) Step 2 (d) Step 3 (e) Step 4

Level 1

recombined

partial bitstream

Level 2

recombined

partial bitstreams

Level 3

recombined

partial bitstreamNoC

Figure 3.7: Loading Multi-level Partial Bitstreams

same size of the PR region. Therefore, we expect the compilation times for different experiments

to be similar. Nevertheless, we notice that a larger static design leads to longer PR mapping time

[99]. The workaround used in [79, 99] is to make the NoC reconfigurable and remove it from the

static design to reduce the size of the static design.

Starting the 2020.2 version, Vivado supports Abstract Shell, which removes unnecessary static logic

and static routing for each PR region. Figure 3.8 shows that each operator is mapped with a

corresponding Abstract Shell, when the orange-highlighted cells indicate the static logic remaining

in each Abstract Shell. In [78], however, we observe that the sizes of Abstract Shells (the sizes of

static design remained in Abstract Shells) can be unbalanced even for the same quad-sized pages.

Because Abstract Shells with large static logic lead to longer compile time as shown in [95], to

balance the sizes of Abstract Shells, we, again, have a reconfigurable pblock for a NoC in [78]. Since

the static logic cannot be placed in the NoC’s pblock, the static logic is pushed out, balancing the

sizes of Abstract Shells. Later in Section 4.4.1 ([77]), we observe that the problem with unbalanced

sizes of Abstract Shells is mitigated if the PR page is not aligned with the clock region boundary

as suggested in AMD PR user guide [14].

3.5. Evaluation

We evaluate our new separate compilation framework that supports variable-sized PR pages on

AMD ZCU102 which uses UltraScale+ ZU9EG FPGA. For evaluation, in Section 3.5.2, we show

29

Quad-sized

page

Single-sized

page

Figure 3.8: Optical Flow Application, Separately Compiled with Variable-sized Pages

30

how the variable-sized pages can be useful in incremental development scenario. In Section 3.5.3, we

show how the variable-sized pages improve the application performance compared to the fixed-sized

pages while compiling faster than the vendor tool’s monolithic compilation. We use an officially

released ZUC102 DFX Platform from [103] and modify the pblock for the dynamic region to reserve

more area for the user application. The dynamic region available to the users consists of 264,464

LUTs, 1,752 18Kb BRAMs, and 2,448 DSPs. We use AMD Vitis 2021.1 including Vitis HLS and

Vivado. We evaluate our framework on a workstation equipped with the 3.7GHz AMD Ryzen 9

5900X 12 Core CPU with 24 processing threads and 128 GB of RAM.

3.5.1. New Overlay with Hierarchical PR pages

Figure 3.6 (d) is the static design used in the experiment, and Table 3.1 shows the available resources

for each PR page in our overlay used for the evaluation. The available resources represent the total

resources available in the PR region minus the blocked resources due to static routing over the PR

regions. % LUT, % RAMB18, and % DSP columns indicate the proportion of resources available

in each PR region. The overlay consists of 22 single pages, (6933–8409 LUTs, 38–72 18Kb BRAMs,

47–72 DSPs). 22 single pages can be recombined to create 11 double pages, (14632–16001 LUTs,

102–116 18Kb BRAMs, 116–143 DSPs). 10 double pages can also be recombined to create 5 quad

pages, (29899–31750 LUTs, 214–228 18Kb BRAMs, 233–282 DSPs). The reason why the pages even

with the same size have different resources available is that AMD UltraScale+ FPGA device [105]

has an irregular columnar resource distribution. In Table 3.1, some single-sized pages with three

BRAM columns have more than 70 RAMB18s while some with two BRAM columns have less than

50 RAMB18s. Another factor for the heterogeneity in PR pages is the different amount of static

routing over the PR regions, resulting in different amount of blocked logic resources and different

amount of routing resources available. For instance, one single-sized PR page has only 77% BRAMs

left because static routing over the PR region blocks 23% of them. The total available resources on

PR pages are (64% LUTs, 70% BRAMs, 57% DSPs) of the device’s dynamic region.

We use a deflection-routed BFT network [48] with Rent exponent [59] of p=0.5 as our NoC. The

size of the packet is 49 bits, consisting of 1 bit of valid, 5 bits of address bits, 4 bits of input

31

or output port bits, 7 bits of sequence bits for reassembly buffer, and 32 bits of data. The NoC

consumes 11,799 LUTs. The number of PEs in the NoC is 32, but only 24 of them are used in the

system, including 2 operators related to DMA operations and 22 PR pages for the user operators.

About 36% = 100% - 64% of the dynamic region (about 95K LUTs) is left for the soft NoC and

Vitis-generated auxiliary logic (35K LUTs together). The clock frequency for the NoC and the user

operators is 200MHz in this chapter ([78]), but in Chapter 4 ([77]), we support 400MHz for the NoC

and multiple clock frequencies (200–400MHz) for user operators. As explained in Section 3.4, the

framework used in the experiment has 17 parent partial bitstreams (1 dynamic region, 5 quad-sized

pages, 11 double-sized pages) in xclbin file formats. The total number of Abstract Shells is 38;

5 quad-sized pages, 11 double-sized pages, and 22 single-sized pages. In Section 7.7, challenges in

creating a static design in the commercial PR technology will be discussed in detail.

Our overlay used in the evaluation has up to quad-sized pages. AMD DFX user guide [14] states

that realistic designs should not exceed three levels of reconfiguration, but we achieve four levels

of PR regions: a dynamic region, a quad page, a double page, and a single page. AMD DFX user

guide also states that there is no formal limit in the number of levels in the Nested DFX technology,

so we can even create octuple pages that could provide more flexibility to the users at the cost of

more difficulty in generating the static design. This means that instead of subdividing the dynamic

region into five quad pages and one double page in Figure 3.6 (a), we can subdivide the dynamic

region into two octuple pages and one sextuple page. This adds another level of granularity, and

the number of sequential top-level implementations required to generate the static design would

increase from 17 to 20. The added level of granularity increases implementation complexity and

raises the likelihood of failure in at least one of the sequential top-level implementations.

The size of single pages is about 7K–8K LUTs in the experiment. One reason why we do not provide

finer-grained single pages is that we want single pages to have a little bit of everything: some LUTs,

some BRAMs, and some DSPs. Because of the heterogeneous columnar distribution of the AMD

UltraScale+ device, if we reduce the size of single pages to the range of 4K LUTs, some single pages

would not have BRAMs or DSPs at all. Another reason is that AMD’s PR technology does not

32

Table 3.1: Resources Available in Different Hierarchical PR Pages

Page
Size

blocked
LUT

blocked
RAMB18

blocked
DSP

available
LUT

available
RAMB18

available
DSP

%
LUT

%
RAMB18

%
DSP

Single

46 2 0 7898 46 72 99.42% 95.83% 100.00%
11 2 0 7541 70 48 99.85% 97.22% 100.00%
121 6 3 7623 42 69 98.44% 87.50% 95.83%
27 4 0 6933 68 48 99.61% 94.44% 100.00%
103 10 4 7721 38 68 98.68% 79.17% 94.44%
2 0 0 7422 72 48 99.97% 100.00% 100.00%
43 4 0 7781 44 72 99.45% 91.67% 100.00%
12 2 0 7412 70 48 99.84% 97.22% 100.00%
41 4 2 7703 44 70 99.47% 91.67% 97.22%
8 2 0 7416 70 48 99.89% 97.22% 100.00%
45 6 2 7779 42 70 99.42% 87.50% 97.22%
4 2 0 7420 70 48 99.95% 97.22% 100.00%
63 8 3 7817 40 69 99.20% 83.33% 95.83%
23 10 1 7529 62 47 99.70% 86.11% 97.92%
56 16 3 8408 54 69 99.34% 77.14% 95.83%
33 0 2 7047 48 70 99.53% 100.00% 97.22%
9 8 1 8271 60 71 99.89% 88.24% 98.61%
8 0 0 6952 48 72 99.89% 100.00% 100.00%
45 10 2 8275 60 70 99.46% 85.71% 97.22%
18 2 2 6942 46 70 99.74% 95.83% 97.22%
7 4 5 8409 64 67 99.92% 94.12% 93.06%
0 0 0 7080 48 72 100.00% 100.00% 100.00%

Double

57 4 0 15519 116 120 99.63% 96.67% 100.00%
152 10 3 14632 110 117 98.97% 91.67% 97.50%
109 10 4 15203 110 116 99.29% 91.67% 96.67%
55 6 0 15257 114 120 99.64% 95.00% 100.00%
51 6 2 15197 114 118 99.67% 95.00% 98.33%
51 8 2 15261 112 118 99.67% 93.33% 98.33%
89 18 4 15423 102 116 99.43% 85.00% 96.67%
89 16 5 15959 104 139 99.45% 86.67% 96.53%
17 8 1 15727 110 143 99.89% 93.22% 99.31%
67 12 4 15709 108 140 99.58% 90.00% 97.22%
7 4 5 16001 114 139 99.96% 96.61% 96.53%

Quad

261 20 7 29899 220 233 99.13% 91.67% 97.08%
108 12 2 30532 228 238 99.65% 95.00% 99.17%
141 26 6 30763 214 234 99.54% 89.17% 97.50%
107 24 6 31717 216 282 99.66% 90.00% 97.92%
74 16 9 31750 224 279 99.77% 93.33% 96.88%

Target device: AMD ZCU102 with UltraScale+ ZU9EG FPGA

33

allow stacking reconfigurable regions within a single clock region. This means that if we want to

create small PR pages, the shape is likely to be narrow and vertically high. While this shape does

not violate any design rule check, the aspect ratio is not desirable, and we decided to create single

pages that have 7K–8K LUT.

3.5.2. Incremental Development Scenario

Our vision is to quickly try the application on the hardware and incrementally refine the design.

Previous works on separate compilation using PR [79, 99, 96, 98] show the feasibility of recompil-

ing only the changed operators. However, challenges remain. First, if the naturally decomposed

operators do not fit into the fixed-sized pages, we cannot use our framework to support parallel

compilations. Second, unnaturally decomposed operators could exhibit excessive communication

over the NoC, and we cannot simply merge them into a single operator if the size of the merged

operator is beyond the capacity of the fixed-sized page. Lastly, the fixed-sized page limits the degree

of optimization of an operator because the increased size of the operator may not fit the fixed-sized

page. The variable-sized PR pages can solve all the problems. In this section, to illustrate the

benefit of our new framework, we present an incremental refinement scenario for Optical Flow ap-

plication from the Rosetta Benchmark Suite [109]. We will demonstrate how flexibility provided

by variable-sized PR pages can support natural decomposition of an application and enable both

inter-operator optimization and inter-operator optimization.

Natural Decomposition

Optical Flow is naturally decomposed into a set of operators connected with dataflow streams.

However, Compute flow operator consumes more than 16K LUTs, which is about 60% of the LUTs

of the design, and it cannot be mapped on a fixed single-sized PR page, which has 6–8K LUTs in

[99, 96]. Therefore, the authors in [99, 96] refine the code with a mix of fixed-point computation

and floating-point computation to reduce the LUT consumption. Also, because of the limited DSPs

available in the single-sized pages, Compute flow is divided into two operators in [99, 96].

In this work, however, we can quickly decompose an application into the most natural form without

substantial code refactoring. The natural decomposition of Optical Flow is shown in Figure 3.9 (a),

34

and the decomposition is now almost identical to the one in the original diagram from [109]. The

post-synthesis LUT utilization of Compute flow operator is about 16K LUTs, but now Compute

flow can be mapped on a quad-sized page that consists of four single-sized pages. The other 8

operators can be mapped on single-sized pages. Step (1) from Table 3.2 corresponds to this natural

decomposition of the design. Since Step (1) is the initial compilation of the design, there are 9

parallel compilations, and 261 seconds is the compile time for Compute flow, the one that takes the

longest time to compile.

Inter-operator Optimization

One issue with natural decomposition mapped with our framework is the 192 bits of datawidth

between Outer product, Tensor_y, Tensor_x, and Compute flow. Because the NoC used in the

evaluation currently supports only 32 bits of datawidth, the application may suffer from the IO

bottleneck. A simple resolution for the limited NoC bandwidth is to merge these operators into

a single operator so that they do not communicate over the NoC. The application diagram after

this inter-operator optimization is shown in Figure 3.9 (b), and Steps (2)–(4) correspond to this

optimization. The quad-sized page is large enough to accommodate the merged Compute flow

operator. As shown in Table 3.2, the number of incremental compile jobs in Steps (2)–(4) is 1

because we only need to recompile the merged Compute flow. The size of the largest operator in

Steps (2)–(4) increases as more operators are merged to Compute flow. The application latency

improves from 18.7ms to 14.7ms because 192 bits of data do not need to travel over the NoC but

communicate within the page.

We can also split Weight_y and Weight_x into three operators (Steps (5), (6) in Table 3.2). In

these steps, the incremental compilation takes only 1–2 minutes since only single-sized pages are

recompiled. Figure 3.9 (c) is the dataflow graph after Step (6).

Intra-operator Optimization

Intra-operator optimization refers to an optimization within an operator. For example, users may

want to unroll some loops in one function or change the data type of some variables. This optimiza-

tion could result in more resource consumption, and fixed-sized pages may not accommodate the

35

Table 3.2: Optical Flow Incremental Development with Hierarchical PR Pages

Steps Largest
Operator

Page
Size

Compile
Jobs

Largest Op Resource Usage Incr
Compile T

App
LatencyLUTs B18s† DSPs

(1) Natural Compt flow Quad 9 16829 7 24 261s 18.7ms
(2) Merge Tensor_x Compt flow Quad 1 17560 7 54 245s 18.1ms
(3) Merge Tensor_y Compt flow Quad 1 18473 33 68 274s 16.0ms
(4) Merge Outer prod Compt flow Quad 1 20357 39 74 288s 14.7ms
(5) Split Weight_x Weight_x1 Single 3 1690 6 10 94s 14.7ms
(6) Split Weight_y Weight_y1 Single 3 1791 18 10 107s 14.7ms
(7) Par=1 –> Par=2 Compt flow Quad 1 20307 45 78 291s 8.7ms
(8) Change data type Compt flow Quad 1 12471 49 192 274s 8.7ms

† B18s: BRAM18s “App Latency” – application execution time per input

new design. Nevertheless, the variable-sized pages using Hierarchical PR can provide appropriate

sizes of PR pages by recombining multiple small pages. Table 3.2’s Step (7) is one example of intra-

operator optimization that we increase the parallelization factor in Tensor_y and Tensor_x within

Compute flow operator. In Step (8), we change the datawidth of calc_pixel_t from 64 to 96 to

reduce the error rate of the application. In doing so, we partially use a floating-point computation

because using solely the fixed-point results in 62K LUTs of Compute flow, and even our quad-sized

pages in the current overlay cannot accommodate it. We refer to the 64 bits of calc_pixel_t with

only fixed-point computations as Optical, (64,fixed pt). We refer to the 96 bits of calc_pixel_t

with a mix of fixed-point and floating-point computations as Optical, (96,mix). Figure 3.9 (c) is

still the dataflow graph after optimizations from Step (7) and (8) because Step (7) and (8) are

intra-operator optimizations within Compute flow.

3.5.3. Experiment Results for Rosetta Benchmarks

To evaluate the compilation speedup and performance, we run the monolithic compilation for

Rosetta Benchmarks with AMD Vitis. Resource usage, compile time, and application latency for

monolithic compilations are shown in Table 3.3. The resource usage does not include the periph-

erals or interconnect between the host and programmable logic which are automatically generated

by Vitis Acceleration flow. The resource usage includes only the logic used for the application.

The compile time in Table 3.3 does not include the packaging step in the Vitis flow, which is typ-

ically around 20 seconds in our experiment environment. In Table 3.4, experiment results for the

fixed-sized PR pages (those marked with *, note that these use only single-sized pages) and the

36

512bits32bits 64bits 192bits

Gradient

xyz
Data in Weight_y Weight_x

Outer

product

Tensor_y Tensor_x Data out

(a) Natural Decomposition of Optical Flow

(c) Split Weight_y and Weight_x and optimize Compute flow

Compute

flow

Single

page

Quad

page

Gradient

xyz
Data in Weight_y2

Weight_y1

Weight_y3

Weight_x2

Weight_x1

Weight_x3

Compute

flow, merged
Data out

Gradient

xyz
Data in Weight_y Weight_x Data out

Compute

flow, merged

(b) Tensor_x, Tensor_y, Outer product merged to Compute flow

Figure 3.9: Incremental Refinements for Optical Flow

37

Table 3.3: Rosetta Benchmarks with Monolithic Vitis Flow (200MHz)

Benchmarks Resource Usage Compile Time App LatencyLUTs B18s DSPs
Optical, (64,fixed pt), Par=1† 26807 164 174 711s 19.1ms
Optical, (96,mix), Par=1† 19213 187 300 695s 19.4ms
Rendering, Par=1† 4113 65 13 427s 2.5ms
Digit Rec, Par=40† 30650 411 1 919s 12.2ms
Digit Rec, Par=80† 54194 731 1 1340s 11.5ms
Spam, Par=32† 10296 38 224 742s 35.7ms
Spam, Par=64† 16284 38 448 848s 30.4ms

† Par: Parallelization Factor

variable-sized PR pages are presented.

For the monolithic Vitis flow in Table 3.3, we use the exact same application code and host code

as the originally released Rosetta Benchmark Suite [109]. For the fast compilation framework, we

rewrite the code in a way that each application consists of operators with streaming interfaces as

mentioned in Section 3.4. Thus, code refactoring could create some discrepancy between the original

Rosetta Benchmark Suite (Table 3.3) and the application mapped on our fast, separate compilation

framework (Table 3.4). This is why even the Step (6) in Table 3.2, the step before increasing

the parallelization factor, has a slightly different application latency compared to the application

latency of Vitis flow in Table 3.3. However, the results from Table 3.3 set the meaningful baseline

to evaluate the compile time benefit of our framework’s fast and incremental compilation.

Resource usage in Table 3.4 could be higher than resource usage in Table 3.3 because in the separate

compilation flow, operators are compiled with NoC interfaces in the PR region. Figure 3.10 shows

Rosetta Benchmarks mappings on the FPGA device with Hierarchical PR pages. In the remaining

sections, we explain how Hierarchical PR pages not only provide flexibility in the operator mapping

but also improve application latency compared to the fixed-sized pages and still compile faster than

Vitis monolithic flow.

Optical Flow with Fixed-Sized PR Pages

The first two rows in Table 3.4 are the experiment results of the decompositions for the fixed-sized

PR pages. As stated in Section 3.5.2, the users need to use a mix of fixed-point computations and

floating-point computations to shrink the sizes of operators to fit in the single-sized pages. We refer

38

to these decompositions as Optical, (64,mix), Par=2 and Optical, (96,mix), Par=2 when 64 and

96 are the datawidths of calc_pixel_t. Both Optical, (64,mix), Par=2 and Optical, (96,mix),

Par=2 have a parallelization factor of two, optimizing Tensor_y and Tensor_x as done in Step

(7) in Table 3.2 All 17 operators are mapped on single pages. However, even after increasing the

parallelization factor, the application latency is worse than Vitis monolithic flow (Table 3.3) because

of the limited NoC bandwidth.

Optical Flow with Hierarchical PR Pages

The third and fourth rows in Table 3.4 represent Optical Flow decompositions (Optical, (64,fixed pt),

Par=2 and Optical, (96,mix), Par=2) with the Hierarchical PR pages. They are the incrementally

developed versions from Section 3.5.2. The application latencies of 8.8ms and 8.8ms are slightly

different from 8.7ms and 8.7ms in Table 3.2. This is because the page assignment for the incremental

development and the page assignment from scratch are different. As we mitigate the limited NoC

bandwidth bottleneck issue by merging the problematic operators, we achieve 3.6× and 4.94×

reduction in the application latency compared to the fixed-sized page system. Compared to the

monolithic Vitis flow, Optical, (64,fixed pt), Par=2 and Optical, (96,mix), Par=2 achieve 2.2×

better application latency thanks to optimizations like increasing unroll factor. The compilations

are still 2.2× and 2.3× faster than the monolithic Vitis flow.

3-D Rendering

We increase the data parallelism by splitting computationally heavy operators into data parallel

operators, and one operator in Rendering, PAR=2 is mapped to a double page. Our framework

achieves 1.4× reduction in the application latency compared to the framework with only single

pages. Compared to the monolithic Vitis flow, Rendering, PAR=2 improves application latency by

1.4× by increasing the parallelization factor while compiling 2.5× faster than the monolithic Vitis

flow.

Digit Recognition

We have 10 operators that compute K-Nearest-Neighbors (KNN) in parallel. From Digit Rec,

PAR=40 to Digit Rec, PAR=80, we increase the unroll factor (from 40 to 80) in these operators.

39

All the operators that were previously mapped in single pages are then mapped in double pages

because of the increased BRAM usage. This optimization leads to 1.5× reduction in the application

latency compared to the framework with only single pages. Our framework compiles 5.3× faster

than the monolithic Vitis flow.

While Digit Rec, PAR=80 (from PAR=40 to PAR=80) achieves 1.5× the performance improvement

with the Hierarchical PR pages (Table 3.4), the performance improvement in the monolithic Vitis

flow is only 1.1× (Table 3.3). KNN algorithm consists of the Hamming distance computation

and KNN vote computation. While increasing the unroll factor accelerates the Hamming distance

computation, the workload for KNN vote computation increases too, becoming the new bottleneck

for the monolithic flow. In the PR page decompositions, KNN vote computation is distributed in

10 operators along with the Hamming distance computation, and KNN vote computation does not

become a bottleneck.

Spam Filter

We increase the unroll factor from 32 to 64 in Spam Filter application, and 7 operators are mapped

to double pages because of the increased DSP usage. However, we do not improve the application

latency, and we believe that this is because of the DMA bottleneck in our experiment. We transfer

data from the host to the DMA operator first, and the DMA operator sends data to another operator

through the NoC, which has only 32 bits of datawidth. We can resolve the limited NoC bandwidth

between operators by merging those operators as done in Optical Flow. Nevertheless, because the

DMA operator is in the framework’s static design, we cannot merge it with other operators. This

is not an inherent problem with our approach but a problem specific to our implementation of the

current framework.

40

Table 3.4: Rosetta Benchmarks with PR Pages

Benchmarks Resource Usage Usage by Page Size Compile
Time

Compile
Speedup over

Mono.

App
Latency

App
Latency
Improve-
ment over

Mono.

App Latency
Improvement over
Fixed-Sized Page

LUTs B18s DSPs Sngl. Dbl. Qd.
Optical, (64,mix), Par=2∗ 35953 218 168 17 0 0 276s N/A 32.1ms 0.6 1.0∗
Optical, (96,mix), Par=2∗ 40765 222 330 17 0 0 329s 2.2 43.4ms 0.4 1.0∗
Optical, (64,fixed pt), Par=2 36336 160 148 9 0 1 322s 2.2 8.8ms 2.2 3.6
Optical, (96,mix), Par=2 28500 164 262 9 0 1 305s 2.3 8.8ms 2.2 4.9
Rendering, Par=1∗ 8605 94 9 5 0 0 151s 2.8 2.6ms 1.0 1.0∗
Rendering, Par=2 22435 106 18 6 1 0 169s 2.5 1.8ms 1.4 1.4
Digit Rec, Par=40∗ 44774 381 2 10 0 0 212s 4.3 7.0ms 1.7 1.0∗
Digit Rec, Par=80 70638 701 2 0 10 0 251s 5.3 4.7ms 2.4 1.5
Spam, Par=32∗ 51461 204 256 15 0 0 287s 2.6 72.5ms 0.5 1.0∗
Spam, Par=64 57263 198 512 7 7 0 307s 2.8 72.4ms 0.4 1.0

* Decompositions that can also be mapped to the Fixed-Sized PR Pages.

41

(a) Optical, (64,fixed pt) (b) Optical, (96,mix) (c) Rendering, Par=2

(d) Digit Rec, Par=80 (e) Spam, Par=64

Single Page

Double Page

Quad Page

NoC

Empty Page

Figure 3.10: Rosetta Benchmarks with Hierarchical PR Pages Mappings

3.5.4. Bitstream Loading Time Overhead

One advantage of PR in many traditional uses is the short loading time of the partial bitstream

compared to that of the full bitstream. But in our framework, the bitstream loading time is often

larger than the monolithic bitstream loading time. As explained in Section 3.3, to load a lower-level

bitstream, we need to load the upper-level context bitstreams first. Table 3.5 shows the bitstream

loading time for both the monolithic Vitis flow and our framework using Hierarchical PR. “Dynamic

Region” column refers to the first level partial bitstream that contains some peripheral logic for Vitis

flow, the NoC, and the context information. “Dynamic Region” corresponds to Figure 3.7 (b)’s level

1 partial bitstream. “Total” column refers to the loading time for the first level partial bitstream,

Table 3.5: Bitstream Loading Times for Full Applications

Benchmarks Monolithic Vitis Hierarchical PR pages
Dynamic Region (1st level) Total

Optical, (64,fixed pt), Par=2 147.6ms 165.9ms 496.7ms
Optical, (96,mix), Par=2 147.6ms 166.1ms 334.8ms
Rendering, Par=1 153.1ms 167.1ms 319.2ms
Digit Rec, Par=40 176.9ms 166.2ms 463.2ms
Digit Rec, Par=80 211.6ms 166.4ms 522.5ms
Spam, Par=32 300.1ms 166.8ms 612.6ms
Spam, Par=64 466.0ms 165.5ms 619.6ms

42

remaining recombined partial bitstreams, and partial bitstreams for the operators.

We observe that there exists a significant overhead in bitstream loading time due to the upper-level

context bitstream, but we can accept the hundreds of milliseconds of overhead to save minutes or

hours of compilation time. In an incremental development scenario, it is possible to only load the

changed partial bitstreams and related upper-level bitstreams, and the overhead is not as large as

that of the full application in Table 3.5.

As stated in Section 2.1, we do not dynamically reconfigure a PR region on the fly. We use PR as a

means to achieve separate compilation on FPGA. If we can create a full bitstream from a collection

of partial bitstreams, in our case, it is acceptable to assemble generated partial bitstreams and load

the full bitstream even if it requires reconfiguring the entire device.

3.6. Discussion

3.6.1. Overlay Generation

To provide different sizes of PR pages, in this work, we use Hierarchical PR so that smaller pages can

be recombined to offer larger pages. An alternative is to stock a variety of overlays that have different

combinations of different sizes of pages. When a refined operator cannot find a valid mapping in

the current overlay, the page assignment algorithm can look for other overlays in the repository.

Nevertheless, in this case, when one operator needs more resources and is mapped on a different

overlay’s larger PR page, all other operators need to be recompiled as well. We believe that a single

static design with variable-sized pages using Hierarchical PR is more elegant. Another approach to

preparing different overlays in the library is to have overlays with different NoC bandwidths. The

NoC in the current overlay supports 32 bits of datawidth, but it is possible to have overlays with

larger NoC bandwidths at the expense of using more resources for the NoC.

More enhancements on the separate compilation framework including supporting multiple clock

frequencies and multiple NoC interfaces are introduced in Chapter 4.

43

3.6.2. Incremental Refinement

In Section 3.5.2, we have seen that a single page takes less than 2 minutes to compile. The benefit

of separate compilation is that the tool only needs to compile for the portion that is changed, not

the entire design.

In HiPR [97, 100], we also show the potential of fast incremental compilations using PR. However,

because we do not employ a NoC, which supports communication between arbitrary sources and

destinations, if the interconnection of operators changes as done in Steps (2)–(6) in Table 3.2,

users need to generate a new static design with the new operator connectivity, leading to hours of

compilation time. HiPR [97, 100] is more suitable to incremental compilations when the application

development is mature, and it is certain that the interconnections of operators stay the same.

So far, we assume that users have insights into the inner state of their design and can identify the

bottleneck. For instance, in Table 3.2’s each step, we assume that we know what optimization we

need to perform next. In Section 5.4, we explain how FIFO counters in the NoC interfaces can

be used to systematically determine whether the limited NoC bandwidth causes the performance

bottleneck or a slow operator causes the bottleneck.

3.7. Conclusions

Recent works on separate compilation demonstrate the feasibility of software-like FPGA compila-

tion. We advance the state-of-the-art in separate compilation by supporting variable-sized pages

that provide more flexibility to the users. Our experiment results show that the variable-sized pages

give 1.4–4.9× performance improvement compared to the framework with the fixed-sized pages while

compiling 2.2–5.3× faster than the commercial tool. Especially in the incremental development sce-

nario, a single page takes less than 2 minutes and a quad page takes 4–5 minutes to compile for the

design that the vendor tool takes 11–12 minutes to compile.

44

CHAPTER 4

ENHANCEMENTS TO FAST COMPILATION FRAMEWORK

In this chapter, we explain the enhancements to the fast compilation framework with variable-sized

pages from Chapter 3. The enhanced framework will be used in Chapter 5’s incremental refinement.

This chapter was previously published in [Dongjoon Park, and André DeHon. REFINE: Runtime

Execution Feedback for INcremental Evolution on FPGA Designs. International Symposium on

Field-Programmable Gate Arrays. 2024.] [77]. I led the project and was in charge of the system

implementation.

4.1. NoC Bandwidth

A main element in fast and flexible FPGA compilation from Chapter 3 is a NoC. Because a NoC

supports communication from any source to any destination, our framework can support any appli-

cation decomposed into a set of operators. While our NoC-based system supports fast and flexible

FPGA compilation, the NoC provides only a limited bandwidth to operators. In Chapter 5, we will

explain how we can identify whether the limited NoC bandwidth is the performance bottleneck in

the current design point. Before that, in this section, we discuss two approaches to mitigate the

NoC bandwidth bottleneck. These two approaches are the “knobs” that our tuner in Chapter 5 will

explore when the NoC bandwidth bottleneck is detected.

4.1.1. Multiple NoC interfaces

In our fast compilation framework with variable-sized PR pages (Chapter 3, [78]), when a synthesized

netlist is large such that the operator does not fit within a single-sized page, multiple single-sized

pages can be recombined to create a larger double-sized or quad-sized page. Yet, in Chapter 3, the

operator in the recombined PR page still uses a single NoC interface even after multiple PR pages are

recombined. This limitation could lead to a NoC bandwidth bottleneck when the communication

is heavy, so in this section, we add support for multiple NoC interfaces for recombined pages.

Figure 4.1 (a) is the example that the user Operator A can now use two NoC interfaces when A

has two input streams (32 bits, 64 bits) and three output streams (32 bits, 32 bits, 64 bits). The

45

A B

(a) Multiple NoC interfaces (b) Merging

NoC

p_sz p_sz p_sz p_sz

A

NoC

144

Merged operator

p_szp_sz

N
o
C

 in
te

rfa
c
e

N
o
C

 in
te

rfa
c
e

N
o
C

 in
te

rfa
c
e

3264 64
3232

Figure 4.1: Two Ways to Mitigate the Limited NoC Bandwidth Issue
p_sz: packet size

distribution of the streams to the multiple NoC interfaces is statically determined. We create all

the possible combinations of the distribution and select the one that has the minimal standard

deviation of sums of the stream widths. In simple words, in Figure 4.1 (a) case, we distribute two

32-bit output streams to one NoC interface and one 64-bit output stream to another NoC interface

because the sums of the output streams per a NoC interface are equally 64. Larger datawidth does

not always mean more data out or data in, so for accurate load balancing, we need to monitor

runtime read and write rates for each stream. However, for simplicity, we statically assign input

and output streams to proper NoC interfaces and do not change the assignment from then on.

4.1.2. Merging

If a larger number of NoC interfaces does not help, we can simply merge two operators whose

connection seems to suffer from the limited NoC bandwidth. In Section 3.5.2, we have already shown

that merging operators with the problematic links improves application performance. Merging

removes the NoC bandwidth limitation, at the cost of a larger page that will be slower to compile.

In Figure 4.1 (b), two operators A and B are merged, and 144 bits of data packets then do not need

to be routed over the NoC.

46

4.2. Multiple Clock Frequencies

1 module leaf(
2 input wire clk_200 ,
3 input wire clk_250 ,
4 input wire clk_300 ,
5 input wire clk_350 ,
6 input wire clk_400 ,
7 input wire [48 : 0] din_leaf_bft2interface ,
8 output reg [48 : 0] dout_leaf_interface2bft ,
9 input wire resend ,

10 input wire reset_400 ,
11 input wire ap_start
12);
13
14 // NoC interface is instantiated here
15
16 // HLS -generated user operator module is instantiated here
17
18 endmodule

Listing 4.1: Automatically Generated RTL for a Single-sized PR Page

The NoC-based fast compilation framework from Chapter 3 has a single clock frequency for an

application and the NoC. With a single clock frequency, if one operator’s implementation can run

only 200MHz not above, the rest of the operators should run at the same 200MHz even if they can

run at higher clock rates. With the multiple clock frequencies, the operating clock is not limited

by the lowest operating clock frequency among all the operators, and operators can run at different

rates. Furthermore, in an incremental refinement scenario, when we want to increase the clock

frequency for only one operator, we can recompile the operator that should run at the higher clock

frequency instead of recompiling all the operators for the overlay with a higher clock frequency.

While in Chapter 3 ([78]), only 200MHz is supported for both the NoC and operators, we improve

the system by running the NoC at 400MHz and supporting 200MHz, 250MHz, 300MHz, 350MHz,

and 400MHz for operators. Therefore, now, there are 5 input clocks (clk_200, clk_250, clk_300,

clk_350, and clk_400) in a page module as shown in Listing 4.1 while there is single input clock

in [78]. The static design for the NoC-based system has 5 different clocks available for all the PR

pages. When the user indicates that an operator runs at a specific clock frequency, our framework

47

(a)CONTAIN_ROUTING true

for static pblock
(b) No static pblock

static logic in static pblock static ⇔ static routing exists

PR page

No

static ⇔ static

routing

Figure 4.2: Snapshots of NoC-based System’s PR Page

automatically generates a corresponding RTL like the one in Listing 4.1 that hooks the specific clock

input (one of clk_200, clk_250, clk_300, clk_350, and clk_400) to the input clock signal of the

operator module’s instantiation. We use Xilinx Parameterized Macros [9] for Asynchronous FIFOs

and other Clock Domain Crossing (CDC) circuits. set_max_delay -datapath_only constraint is

automatically added in the implementation script to limit the distance of the clock domain crossing

FFs.

4.3. Page Heterogeneity and Static Pblock

4.3.1. Page Heterogeneity

As discussed in Section 3.5.1, PR pages in the NoC-based system are heterogeneous, which means

that even if they are the same single-sized pages, available logic and routing resources are different.

Two reasons for the heterogenous PR pages are (1) irregular columnar resource distribution on

modern FPGAs and (2) different amounts of static routing over PR regions. Heterogeneous PR

pages mean that a netlist that can be successfully placed and routed in one single-sized page may

fail in another single-sized page, and it complicates the page assignment algorithm which will be

explained in Section 4.5.

4.3.2. Static Routing over PR Pages

We reduce the effects of static routing over PR pages by creating a pblock for non-pages elements

(the NoC, AXI interconnect, peripherals) and having CONTAIN_ROUTING true for the pblock. This

48

requires Vivado to create a hierarchy in the block diagram for non-pages logic and assign the newly

created cell to the pblock. With this setting, routing whose source is in static design and destination

is in static design (selected in white in Figure 4.2 (b)) will be prevented from the reconfigurable

regions. Figure 4.2 (a) shows the snapshot of a “clean” PR page when the static logic is added to

a pblock that has CONTAIN_ROUTING property on. The remaining green routing on the PR page

shown is static⇔reconfigurable routing or global clock signals. A similar technique is introduced in

the AMD DFX user guide [14] with the section title of “Reduce Bleed Over of Static Nets to the

Reconfigurable Pblocks”. Since static routing over PR regions blocks resources in the PR regions,

enabling CONTAIN_ROUTING property for the static pblock reduces the number of blocked resources.

Table 4.1 presents the number of blocked resources and available resources in the PR pages of the

new NoC-based system with the static pblock. The target device is AMD ZCU102 with ZU9EG

UltraScale+ FPGA, the same device as Chapter 3. The same overlay will be used in the next

chapter for incremental refinement. While a direct apples-to-apples comparison with Table 3.1 is

inappropriate due to different floorplannings, Table 4.1 shows a significant reduction in blocked

resources when CONTAIN_ROUTING property is enabled.

Although CONTAIN_ROUTING true constraint reduces the number of blocked resources, whether hav-

ing the constraint for the static pblock leads to more resources available on the PR pages is ques-

tionable because CONTAIN_ROUTING definitely makes the generation of static design more challenging

at the first place. One option is to create large PR pages and accept static routing over PR pages

(CONTAIN_ROUTING false). Another option is to create slightly smaller PR pages and prevent static

routing from PR pages (CONTAIN_ROUTING true). Since the first option allocates more resources

to PR pages, even with some resources blocked, there is a chance that the first option leads to

more resources in the PR pages. Nevertheless, having CONTAIN_ROUTING true constraint for static

pblock leads to more regular PR pages, at least PR pages in the same columns that have the same

columnar resource distributions.

49

Table 4.1: Resources Available in Different Hierarchical PR Pages (CONTAIN_ROUTING true)

Page
Size

blocked
LUT

blocked
RAMB18

blocked
DSP

available
LUT

available
RAMB18

available
DSP

%
LUT

%
RAMB18

%
DSP

Single

2 0 1 7438 64 87 99.97% 100.00% 98.86%
1 0 0 7919 66 44 99.99% 100.00% 100.00%
2 0 0 7302 64 88 99.97% 100.00% 100.00%
0 0 0 7776 66 44 100.00% 100.00% 100.00%
0 0 0 7264 62 88 100.00% 100.00% 100.00%
0 0 0 7776 66 44 100.00% 100.00% 100.00%
0 0 0 7304 64 88 100.00% 100.00% 100.00%
2 0 0 7774 66 44 99.97% 100.00% 100.00%
0 0 0 7264 62 88 100.00% 100.00% 100.00%
0 0 0 7776 66 44 100.00% 100.00% 100.00%
0 0 0 7440 64 88 100.00% 100.00% 100.00%
2 0 0 7918 66 44 99.97% 100.00% 100.00%
1 0 0 7839 44 88 99.99% 100.00% 100.00%
1 0 0 7919 66 66 99.99% 100.00% 100.00%
1 0 0 7615 44 88 99.99% 100.00% 100.00%
1 0 0 7775 66 66 99.99% 100.00% 100.00%
1 0 0 7695 44 88 99.99% 100.00% 100.00%
0 0 0 7776 66 66 100.00% 100.00% 100.00%
2 0 4 7742 44 84 99.97% 100.00% 95.45%
2 0 0 7918 66 66 99.97% 100.00% 100.00%

Double

0 0 0 15400 132 132 100.00% 100.00% 100.00%
1 4 1 14647 126 131 99.99% 96.92% 99.24%
1 0 0 15119 132 132 99.99% 100.00% 100.00%
0 0 0 15080 130 132 100.00% 100.00% 100.00%
0 2 0 15120 130 132 100.00% 98.48% 100.00%
0 0 0 15080 130 132 100.00% 100.00% 100.00%
0 0 0 15400 132 132 100.00% 100.00% 100.00%
0 0 0 15840 110 154 100.00% 100.00% 100.00%
0 0 0 15472 110 154 100.00% 100.00% 100.00%
0 0 0 15552 110 154 100.00% 100.00% 100.00%
2 0 4 15742 110 150 99.99% 100.00% 97.40%

Quad

2 4 0 29806 260 264 99.99% 98.48% 100.00%
0 0 0 30240 264 264 100.00% 100.00% 100.00%
0 0 0 30520 264 264 100.00% 100.00% 100.00%
0 0 0 31392 220 308 100.00% 100.00% 100.00%
2 0 4 31374 220 304 99.99% 100.00% 98.70%

Target device: AMD ZCU102 with UltraScale+ ZU9EG FPGA

50

(a) Static pblock (CONTAIN_ROUTING true) selected (b) Orange: NoC + FIFOs w/ almost-full,

 Cyan: pipeline registers

Figure 4.3: Screenshot of the New Overlay

4.4. Engineering Details in Overlay Generation

4.4.1. Floorplanning

In Chapter 3’s NoC-based system, the NoC runs at 200MHz, so it was relatively easier to create

a static design that meets timing. In this chapter, however, we run the NoC at 400MHz and feed

in 5 different clock frequencies to PR pages (Section 4.2). We also have a static pblock that has

CONTAIN_ROUTING true (Section 4.3), adding another burden in the routing phase. To successfully

generate a static design that runs at 400MHz, we insert small FIFOs with an almost-full signal and

pipeline registers [2, 96, 39] between the NoC and PR pages to isolate the timing closure of the NoC

and PR pages. In this Latency Insensitive system [21], an almost-full is asserted a couple of cycles

before the small FIFO is really full, and this delay corresponds to the number of pipeline stages

for the registers. The placement of pipeline registers is constrained near the PR pages to provide

guidance to Vivado. Figure 4.3 (a) shows the static pblock with CONTAIN_ROUTING true which

contains the NoC and Vitis-generated peripherals. The orange-highlighted cells in Figure 4.3 (b) are

51

the NoC and small FIFOs (about 13K LUTs together). The cyan-highlighted cells in Figure 4.3 (b)

are pipeline registers that are placed near the PR pages. The remaining logic in the static pblock

are AXI interconnect and peripherals (about 25K LUTs).

Another difference from the previous overlay in Figure 3.6 is that in Figure 4.3, we deliberately leave

some space between the clock region boundary and PR pages as suggested in [14]. In the previous

chapter ([78]), we report the unbalanced sizes of static logic for Abstract Shells. The workaround in

[78] is to create a pblock for the NoC and indirectly adjust sizes of static logic for different Abstract

Shells. When we leave some space between the clock region boundary and PR pages, this issue is

mitigated, resulting in more regular Abstract Shells in terms of the size of static logic.

4.4.2. Placeholder Modules in Partial Reconfiguration

In both [78] and [77], we use almost empty placeholder reconfigurable modules when we generate a

static design. Using empty modules is the opposite of the convention to use the most challenging

modules. The reason why we use almost empty modules is that Vivado struggles to route the

design with non-empty modules in the first place. Furthermore, when we use non-empty modules

to generate static design, it turns out that more resources are blocked in [78]. We believe that one

possible reason for more blocked resources is that empty modules result in more flexible locations of

Partition Pins whereas non-empty modules have more constraints on where Partition Pins should

be placed.

4.5. Page Assignment Based on Recursive Bi-partitioning

In the previous chapter ([78]), our framework synchronizes parallel compile runs after HLS and logic

synthesis, performs a capacity-based page assignment, and launches parallel placement and routing.

The algorithm in Section 3.3 first sorts the operators in descending order in their sizes. Then, it

creates possible_pblock_list for the largest operator, which is the list of page candidates that

are expected to safely accommodate this operator, and it selects the “tightest” operator to leave as

much space as possible for other operators. This capacity-based page assignment could potentially

lead to NoC congestion if logically adjacent operators are placed far apart from each other. For

example, if two small operators, A and B, are directly connected to each other, it is intuitive to

52

map Operator A to one single-sized page and map Operator B to another single-sized page both

sharing the same parent double-sized page. Then, the data packets between the two need to hop a

single switch to be transferred. However, the capacity-based page assignment prioritizes to reduce

the internal fragmentation, possibly mapping two operators far apart from each other. As a result,

the packets between the two operators may need to hop multiple switches, potentially causing NoC

congestion with other packets.

In this section, we improve the page assignment algorithm so that it performs locality-aware page

assignment and still finishes in less than a second. BFT NoC [66, 29, 48] is used in our framework [79,

99, 78, 77] because it is lightweight on FPGA. A simple heuristic-based approach to place processing

elements on BFT nodes is to bi-partition the dataflow graph to minimize the traffic between two

partitions and assign two partitions in different subtrees. We can recursively bi-partition and assign

partitions in different subtrees until there is only one operator left in a partition. Figure 4.4 describes

recursive bi-partitioning. The numbers inside the operators indicate “weights”, the expected sizes

of PR pages based on the operators’ post-synthesis resource estimates.

We use metis software [54] to perform graph bi-partitioning. We first perform the capacity-based

page assignment to assign the weights for each operator. At this point, we have a valid mapping,

and weights are the sizes of the tightest PR pages for each operator from the capacity-based page

assignment. After every bi-partition, we make sure that each partition is mappable to an assigned

subtree. Because of heterogeneity in PR pages, a partition that is mappable to one subtree may not

be mappable to another subtree with the same size. For example, one operator that has a weight

of one cannot find a large enough single page in a specific subtree and needs a double page. If a

partition is not mappable to a subtree, then we swap the mapping of partitions and subtrees. After

recursive bi-partitioning, when there is a single operator left in a partition, instead of mapping the

operator to the tightest page, we map to a larger page. For instance, if a single operator is left

and is assigned to a subtree that has four single pages, then we simply assign this operator to a

quad page. In the previous work [99], we observe that the size of the PR page does not affect the

compilation runtime much, so it will not lengthen the compilation. When there is no valid mapping,

53

1

2

1 1

1

1 1 1

1 1
1

1

2nd level bi-partitioning

1

2

1 1

1

1 1 1

1 1
1

1

P-1 P-2 P-1-2P-1-1 P-2-1 P-2-2

1st level bi-partitioning

…

Figure 4.4: Page Assignment Based on Recursive Bi-partitioning

we return the capacity-based page assignment which was used to generate the weights. If there is

no valid capacity-based page assignment, then we exit the page assignment, notifying the users or

the automation script that there is no valid mapping.

In an incremental refinement scenario, the sizes of operators change. If the refined operators can

still be mapped in the previous page assignment, then we use the previous page assignment. In this

way, we can recompile only the changed operators, and this is one reason that we assign to a larger

PR page instead of the tightest page when a single operator is left to be mapped to a subtree. If the

previous page mapping is not expected to work, we perform a new page assignment from scratch.

The current page assignment algorithm statically assigns operators to pages. The current algorithm

captures interconnection between operators so that neighboring operators can be placed next to

each other, but it does not take dynamic read and write rates into account. For example, even if

two directly connected operators rarely send and receive packets to each other, they are placed close

to each other because they are directly connected in a dataflow graph. A smarter page assignment

should analyze the communication among operators at runtime and assign operators accordingly.

In the current NoC-based overlay, however, the number of singe-sized pages is only 22 and has a

Rent exponent of 0.67 (note that the Rent exponent has changed from the previous chapter). In

such a small BFT, page assignment has little effect on application performance. For a larger device

that has 1M LUTs, our overlay can have more pages, and if the number of pages increases to 128

or 256, the impact of page assignment on application performance is expected to increase, making

54

a better page assignment more desirable.

4.6. isFit classifiers

4.6.1. Motivation

A sub-task in page assignment problem is how to determine whether a synthesized netlist fits a

specific PR page or not. A simple solution is to use capacity-based hard constraints. For instance, we

can assume that the operator can be successfully placed and routed if the estimated LUT utilization

is below X% of the available resources on a specific page. [34, 39] use such capacity-based hard

constraints when floorplanning on FPGA. AMD also warns that routing could be challenging for

the designs with LUT utilization over 80% of the entire device [101]. The potential problem with

the approach based on hard constraints is that too conservative constraints lead to large internal

fragmentation on the page and too aggressive constraints lead to an implementation (place/route)

failure. Designs with different logic utilization and routing complexity would need different hard

constraints. For example, one design may be successfully mapped on a PR page even if the post-

synthesis LUT estimate is over 90% of LUTs available on the PR page, but another design with

higher routing complexity may need more conservative constraints like 65%. Also, the two single-

sized pages could have different resource distribution. They may have different resources because

of heterogeneous columnar resource distribution or may have different routing resources because of

different expanded routing regions. For these reasons, we train a classifier per PR page and let the

classifier make a decision. If all LUT, BRAM, and DSP resource estimates are lower than 60%5 of

the resources available in the PR page, we assume that the netlist can be successfully placed and

routed on the page. Otherwise, we use our isFit classifiers to make a decision.

4.6.2. Training and Testing

To generate training and test datasets for isFit classifiers, we generate a range of designs that have

different resource ratios and routing complexity, run placement and routing on each PR page, and

record whether the implementation has failed or not (Figure 4.5). We categorize the implementation
5For double-sized and quad-sized pages, the numbers are 60%, 60%, 60% for LUT, BRAM, DSP. For single-sized

pages, the number are 60%, 50%, 50%. We also check the resource estimates of LUTRAM and FF are below the
available resources (100%) in the PR region.

55

Place/Route

Page
Netlists

Classifiers

training

P/R

results

Features

(Resource, Rent value,

fanout, # of instances)

User operator

(netlist, features)

PagePage
Page

Yes/No

In Page assignmentClassifier training per Page

is Fit?is Fit?is Fit?

Classifiers

Figure 4.5: isFit Overview

results into three, “success”, “timing violation”, and “failure”. When labeling the datasets, we label

only “failure” as positive and label “success” and “timing violation” as negatives, assuming “failure”

is from lack of resources available in the PR page and “timing violation” can be improved with

different implementation directives [7]. We use Rosetta benchmarks [109] to generate datasets. We

traverse different parameter values for different benchmarks and use integrated top functions of mul-

tiple sub-modules to create diverse designs as done in [108]. Parameters include datatype, constant

value, parallelization factor and storage type (LUTRAM or BRAM). Because our PR pages are the

processing elements of the NoC, we include the NoC interface in the design when creating datasets.

Features used in our classifiers are post-synthesis resource estimates (LUT, BRAM, and DSP), Rent

value, average fanout, and Total Instances. After HLS and logic synthesis, for each design, we

extract these features with Vivado’s report_utilization command and report_design_analysis

command. We use Rent value, average fanout, and Total Instances from the complexity char-

acteristics report because these are the metrics that are together related to the routing congestion

according to AMD user guide [8]. For each PR page’s training and test data, we select netlists with

over 60% of the PR page in LUT utilization. Since we train a classifier per a PR page, the number

of classifiers is # of frequencies×# of total PR pages.

The new NoC-based system in this chapter (Table 4.1) has 5 different frequencies (200MHz–400MHz)

and has total 36 PR pages (single + double + quad), so the total number of trained classifiers is

56

D
if
fe

re
n
c
e
 i
n

 R
e
c
a

ll(

)/

P
re

c
is

io
n

(

)

Recall Threshold

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

0.9 0.95 0.96 0.97 0.98 0.99

200MHz 250MHz 300MHz 350MHz 400MHz

Figure 4.6: Difference in Recall and Precision between Our Trained Classifiers and Classifications
Based on Hard Constraints

180. The average number of training and test datasets for each page in the experiment is 2573

(200MHz), 2730 (250MHz), 2660 (250MHz), 2532 (300MHz), 2364 (400MHz). We use Vitis HLS

22.1 and Vivado 22.1 to generate datasets for the classifiers. We use the scikit-learn library [81]

to train and test the classifiers. We randomly select 80% of stratified data for training and 20%

for testing. We use a Random Forest model for all the classifiers and perform a grid search on

n_estimators and max_features to find the best hyper-parameter for each classifier.

In our case, False Positives (the classifier predicts that the netlist would fail in implementation,

but it succeeds) are relatively acceptable. However, False Negatives (our classifier predicts that

the netlist would succeed in implementation, but it fails) are not acceptable as they could require

recompilation of the page, slowing down our fast compilation strategy. Therefore, we adjust our

classifiers to at least match a target value of recall (True Positives
True Positives+False Negatives

) and evaluate whether

the classifiers still perform better than hard constraints in precision (True Positives
True Positives+False Positives

).

Figure 4.6 shows the difference in recall (solid line) and precision (dashed line) achieved by isFit

over the hard constraint classifier. So, the difference in recall indicates isFit ’s recall minus the hard

constraint classifier’s recall. The hard constraint classifier predicts implementation failure if one of

the resources among LUT, BRAM, and DSP is over 70% of the PR page. The difference values

are the average of all 36 PR pages. The X-axis shows the recall threshold to limit the number of

False Negatives. As we set the recall threshold of 0.95 or higher, classifiers perform better than

57

hard constraints in recall (difference in recall is positive), while still performing better (difference

in precision is 0.19–0.33 when the recall threshold is 0.95) at classifications of False Positives than

classifiers based on conservative hard constraints. Our page assignment algorithm based on graph

bi-partitioning and isFit classifiers finishes in less than a second.

4.6.3. Limitations

A clear downside of isFit classifiers is a long training time. Our overlay in this chapter supports 5

different clock frequencies and has a total of 36 PR pages (single + double + quad). The average

number of training and test datasets for each PR page is about 2,500. In our experiments, we have

more than 20,000 synthesized netlists, and we run 450,000 = 2,500×180 placement and routing to

create datasets, which contain features and labels of implementation results. Assuming we have a

large compute server that can run 50 Vivado compile runs, each compute node is in charge of 9,000

= 450,000/50 Vivado implementation runs. Even if implementations for PR regions are shorter

than an implementation for the entire chip, it should take 90,000 minutes = 62.5 days, assuming

each implementation takes 10 minutes. Because 2500 training datasets are quite small, if we want

to double the number of training datasets, it takes 135 days just to train classifiers. If we make

a minor fix on the overlay and the floorplanning changes, then we probably need to re-train these

classifiers. If the programmable logic is regular [35, 42, 25] and we completely remove static routing

over reconfigurable regions, we can train one classifier per size. Then, we need only 3 classifiers

(single, double, quad) per clock frequency, so we need only 15 classifiers. This leads to only 5 days

of training with the same compute resources.

4.7. Conclusions

The support for multiple NoC interfaces or merging operators that suffer from limited bandwidth can

close the performance gap between the design from our NoC-based separate compilation framework

and the design from the monolithic compilation without the NoC. With the support for multiple

clock frequencies, clean PR regions, and a smarter page assignment algorithm, we improve the

quality of the mapped design with our fast separate compilation framework. In the next chapter,

we will use this enhanced NoC-based system in a fast incremental refinement strategy.

58

CHAPTER 5

INCREMENTAL REFINEMENT AND BOTTLENECK IDENTIFICATION

In Chapter 3, we take a step forward to software-like incremental refinement by providing more flex-

ibility to the users through the variable-sized pages. In this chapter, we propose a fast incremental

refinement strategy utilizing our fast compilation framework. We also address a missing component

from software-like incremental refinement: bottleneck identification. We introduce a systematic

profiling capability based on FIFO counters. For evaluation, we compare the design tuning time of

our fast incremental refinement strategy with that of the monolithic flow, both equipped with the

bottleneck identification scheme. This chapter was previously published in [Dongjoon Park, and

André DeHon. REFINE: Runtime Execution Feedback for INcremental Evolution on FPGA De-

signs. International Symposium on Field-Programmable Gate Arrays. 2024.] [77]. I led the project

and was in charge of the system implementation.

5.1. Motivation

A separate compilation framework using PR [79, 99, 98, 78] supports fast parallel compilation and

incremental compilation. One key element in this line of work is a soft NoC on top of the FPGA

programmable logic. NoC provides virtualization between different operators with simple linking.

Furthermore, a single static NoC overlay can support arbitrary designs unlike an application-specific

overlay like HiPR [97, 100] where static design needs to be regenerated if interconnections change.

However, NoC comes with a cost. First, because we use soft NoC, NoC costs FPGA resources that

could otherwise be allocated to operators. Second, limited NoC bandwidth could be the performance

bottleneck of the application. For designs that do not utilize a lot of resources or do not suffer from

limited NoC bandwidth, our NoC-based system is enough for the final, optimized design. However,

for designs that need to utilize more resources and suffer from limited NoC bandwidth, we should

remove the NoC. Since we do not want the final design point of the incremental refinement to be

sub-optimal, we need to remove the NoC at some points of the iterative process even if it means a

longer, monolithic compilation.

59

To make FPGA development more productive, our ultimate goal is to support “software-like” FPGA

development. In [79, 99, 78], we attack the long FPGA compilation problem so that users can

have short edit-compile-debug cycles as they compile software programs. Another difference in

FPGA development from software programming apart from long FPGA compilation is the lack of

visibility on the inner state of the hardware design. Software engineers are used to rich profiling

tools to identify where the application spends the most time. Then, they incrementally refine the

bottleneck function to improve the application performance. However, in hardware design, such

runtime performance profiling tools are not readily available. Models for application performance

or resource utilization can provide estimated results in the early stages of the hardware compilation,

but they are potentially inaccurate. As we have a fast and flexible FPGA compilation framework

from the previous chapter, we raise a question, can we identify the bottleneck of the application

along with the fast compilation to iterate through the initial design points quickly on the path to an

optimized monolithic FPGA design?

5.2. Previous Work

5.2.1. HLS Design-Space Exploration on FPGA

HLS DSE is generally categorized into two approaches: model-based and synthesis-based, with

some methods being a mixture of the two [83]. Model-based techniques build predictive models

for performance and resource consumption, so they can quickly search the design-space [68, 69].

However, model-based techniques are inaccurate compared to synthesis-based methods that invoke

HLS tools to evaluate the design point, and inaccurate models could lead to a sub-optimal design,

under-utilizing or over-utilizing resources for the given platform [83]. Synthesis-based methods use

results in the early stages of the hardware mapping like post-HLS estimates [87]. They are more

accurate than model-based methods at the expense of runtime, but there is still a huge gap between

post-HLS estimates and the actual placed and routed designs. Authors in [27] report that the

post-HLS resource estimation errors by the vendor tool can reach up to 141% for LUT utilization

and 95% for FF Utilization. The problem with post-HLS estimates is exacerbated for the data-

dependent applications. For example, when there are variable loop bounds, AMD Vitis HLS does

60

NoC

(a) NoC-based system (b) Monolithic system

A

C

B

D E

A C

B D

E

A NoC

(a) NoC-based system (b) Monolithic system

Figure 5.1: NoC-based System and Monolithic System

not report the trip counts as the values are unknown at compile time [24, 12].

We aim to place, route, and run the design on the FPGA. Based on the runtime execution feed-

back, we incrementally refine the design, so our approach is possibly an extreme version of the

synthesis-based DSE. Our strategy is different from the aforementioned approaches that use models

or predictive results of the early stages. As FPGA compilation is expensive, instead of exploring

many design points to identify the performance bottleneck, we perform bottleneck-guided optimiza-

tion, similar to the strategy used in [87]. Instead of relying on post-HLS estimates as done in [87],

we use the feedback from the placed and routed design that runs on the hardware.

5.3. Incremental Refinement Strategy

We have two approaches to compiling a user design as shown in Figure 5.1. The NoC-based system

is our fast compilation framework that supports parallel and incremental compilation using Hierar-

chical PR (Chapter 3, Chapter 4). However, the NoC and the NoC interfaces add area overhead.

A soft NoC costs 11K LUTs in Chapter 4, and a single NoC interface per operator consumes a few

hundred to slightly over a thousand LUTs depending on the number of input and output ports [99].

The NoC-based system also results in fragmentation, not fully utilizing available programmable

logic. For instance, if 16 operators whose sizes are 5K LUTs are mapped to 16 single-sized PR

pages whose sizes are 8K LUTS, 48K LUTs = 3K LUTs×16 in the PR pages are unused. The NoC

introduces a limited bandwidth too. If 128 bits of data are transferred over the NoC which has a

payload size of 32 bits, it takes four cycles to transmit a single data. The monolithic system is a

61

naive implementation of a dataflow application that directly connects operators with FIFOs. This

approach does not have area overhead from the NoC interfaces and fragmentation incurred by the

divide-and-conquer strategy. The monolithic system does not suffer from the limited bandwidth of

the NoC either. Nevertheless, the compilation is long.

Our incremental refinement strategy quickly maps the user design on hardware with the NoC-based

system. We build upon our system from the previous chapter which provides fast and flexible

compilation. To identify the bottleneck operator or determine whether the limited NoC bandwidth

is the bottleneck, our framework increments FIFO counters in the NoC interface. The support for

bottleneck identification in this chapter ([77]) is the key component in incremental refinement that

previous split FPGA compilation works are missing.

When bottlenecks are identified, we can refine the bottleneck operators or the NoC communication

mapping for the streams between operators. To resolve the NoC bandwidth bottleneck, we can use

multiple NoC interfaces for an operator or operator merging to directly connect high bandwidth

operators avoiding the need for the NoC on those links, as explained in the previous chapter.

The user or automation selects a new design point by refining either the bottleneck operator or the

NoC bandwidth bottleneck. In this process, the size of operators or the operating frequencies of

operators should change as previously illustrated in Figure 1.2. When a new design point is selected,

our NoC-based system recompiles only the necessary operators. This gives us a new design which

can then be profiled with the FIFO counters to identify the next bottleneck.

This iteration continues until the design-space is all explored for the bottleneck operator or the

design needs more resources than available in the PR pages. Finally, a design is compiled with the

monolithic system that also integrates FIFO counters to identify the bottleneck, and the iteration

continues. This strategy can help the users to quickly iterate the important, initial design points,

or the flow can be automated to output an optimized design in the given design-space for the final,

optimized design. Because our strategy migrates to the monolithic system at the expense of a longer

compilation, our final design does not suffer from area overhead or limited bandwidth from NoC

62

infrastructure. We expect to achieve a faster tuning time than the design tuning done only by

monolithic compilation, iterating initial yet important design points faster with our fast NoC-based

system.

5.4. Bottleneck Identification

As shown in Figure 5.1, operators in a dataflow application are connected with FIFOs. In the

NoC-based system, FIFOs reside in the NoC interfaces (Figure 5.1 (a)), and in the monolithic

system, FIFOs directly connect operators (Figure 5.1 (b)). Building upon [85, 24], we retrieve

information from these FIFOs to identify the bottleneck operator or whether the NoC bandwidth is

the bottleneck. The high-level intuition of our bottleneck identification is illustrated in Figure 5.2.

In this example, Operator 3 may be slower than Operator 2 because Operator 3 does not consume

the data at the rate that Operator 2 produces. Similarly, Operator 3 may be slower than Operator

4 because Operator 3 does not produce the data at the rate that Operator 4 consumes. As a result,

Operator 1, Operator 2, and Operator 4 stall while Operator 3 does not stall, busy processing data.

In this example, it is likely that Operator 3 is the bottleneck of this application. The idea is similar

to -pg option in the software compiler that causes each function to call mcount routine whose results

are later profiled by a program like gprof [37].

[85] uses FIFO status (full, empty) to identify the bottleneck in a cluster of "Computing Elements".

In evaluation, [85] uses MicroBlaze cores as Computing Elements, and for two different application

architectures, they manually improve the application performance based on the monitoring informa-

tion extracted from the FIFOs. However, [85] does not demonstrate iterative application refinement,

and case studies are limited to an array of soft cores. HLScope+ [24] modifies HLS source codes to

monitor the module status and FIFO status. HLScope+ introduces a stall analysis network (SAN)

that analyzes the root cause of the stall. HLScope+ focuses on generating fast and accurate cycle

estimation instead of demonstrating bottleneck identification in design-space exploration. We do

not modify HLS source codes; we identify bottlenecks in software based on the raw counter data

collected. Unlike previous works, we demonstrate the incremental refinement on realistic applica-

tions using bottleneck identification (Section 5.7), and our work is embedded with the fast separate

63

Doesn’t

stall!

Stalls!Stalls!Stalls!

1 32 4

May be bottleneck

Figure 5.2: High-level Intuition of Bottleneck Identification using FIFO Counters

compile so that the runtime hardware execution feedback is obtained quickly.

5.4.1. Stall Counters

Both the initial NoC-based system and the final monolithic system utilize stall counters to identify

the bottleneck operator as shown in Figure 5.3 (a). The input stall condition is defined as the state

when the input FIFO is empty and the user operator asserts a ready signal. At a high level, it

means that the operator wants to process the data, but the data is not available, so the operator

stalls. Similarly, the output stall condition is defined as the state when the output FIFO is full and

the user operator asserts a valid signal for the data. At a high level, it means that the operator

wants to output the data, but the successor is still busy processing the previous data. The stall

condition for the operator is asserted when at least one input FIFO has a stall condition or at least

one output FIFO has a stall condition. Finally, the stall counter increments when the stall condition

is asserted. We know that as the number of stall counters for an operator is low, the operator is

likely to be the bottleneck because this operator is busy processing some data while other operators

are waiting for the input data or waiting to output the data.

5.4.2. Full Counters

In the NoC-based system, each operator has a single, limited-bandwidth input channel into the

NoC and a single limited-bandwidth output channel; these can be narrower than the total input and

output width needed by the application, and multiple input and output ports share one input channel

and one output channel. The limited NoC bandwidth could limit the application performance [96].

A NoC bottleneck can be detected similarly with full counters on the FIFOs associated with the

64

A AB

NoC

Output FIFO Input FIFO Output FIFOInput FIFO

(a) Use stall counters

 to identify bottleneck op

(b) Use FIFO full counters

 to identify NoC BW bottleneck

NoC (NoC system) or

Other ops. (Monolithic system)

400MHz

200MHz~
400MHz

User Operator
N

o
C

 in
te

rfa
c
e

N
o

C
 in

te
rfa

c
e

User Operators

Input FIFO stalls: empty && user_ready
Output FIFO stalls: full && user_valid
➔ Stall condition: at least one FIFO stalls

A’s Output FIFO’s full↑ && B’s Input FIFO’s full↓

Figure 5.3: Bottleneck Identification with FIFOs

stream links into and out of each operator. Full counters increment when the FIFO is full. In

Figure 5.3 (b), Operator A sends data to Operator B through the NoC. If Operator A’s output

FIFO has large full counters and Operator B’s input FIFO has small full counters, we can assume

that the NoC bandwidth could be a bottleneck. This means that Operator A tries to send out the

data often, but Operator B does not receive the data at a similar rate. In our system, we consider

there exists NoC bandwidth bottleneck if the difference in the full counters (output FIFO’s full

counters of A - input FIFO’s full counters of B) is large enough.

5.4.3. Resource Usage

Logic related to FIFO counters is implemented in RTL along with the NoC interface (NoC-based

system) or the top-level wrapper function (monolithic system). Other than stall counters and full

counters, we keep empty counters and read counters for debugging purposes. In the NoC-based

system, a NoC interface and a user operator are mapped in a PR page. When the counters are

set to 28-bit registers, a NoC interface with a single user input stream (32-bit) and a single user

output stream (32-bit) costs about 700 LUTs, 1000 FFs, and 4 36Kb BRAMs including counter

logic. Logic related to counters alone uses about 200 LUTs and 400 FFs. The size of single-sized

pages in the previous chapter (Table 4.1) is about 7,000–8,000 LUTs, so the counter logic is about

65

2–3% of the LUTs in a single-sized PR page. In the monolithic system, logic related to counters

uses about 60 LUTs and 140 FFs per operator. One reason for the discrepancy in resource usage is

that the NoC-based system uses about double the number of FIFOs than the number of FIFOs used

in the monolithic system. For instance, for operators A and B in Figure 5.3 (b), in the NoC-based

system, they need one output FIFO for A and one input FIFO for B. In the monolithic system, on

the other hand, one FIFO between A and B is enough. Among the benchmarks in our experiments

(Section 5.7), Rendering has the largest number of streams (30 streams) thereby consuming the

most resources for counter logic. In the final monolithic design of Rendering, counter logic is only

3.4% (1900 LUTs) of the final design’s total LUT utilization, and only 5.3% (3500 FFs) of the FF

utilization.

5.4.4. Limitations

It is possible to have a stall counter per input and output stream to identify the problematic stream

for finer-grained analysis. For simplicity, we keep a single stall counter per operator and identify

the bottleneck operator.

For the same run time, an operator running at 400MHz can have up to twice as large stall/full

counters as an operator running at 200MHz. Therefore, we normalize counters by dividing them by

the operating frequencies, but this simple approach may not be sufficient to reflect the differences

in operating frequencies. Furthermore, an operator with different rates of input and output may be

harder to classify correctly as the low rate side is less likely to fill a FIFO than the high rate side.

Although our bottleneck identification based on FIFO counters is an approximation, in Section 5.7,

we show how our approach based on FIFO counters identifies bottleneck operators and resolves

the NoC bandwidth bottleneck in incremental development for realistic HLS designs, improving the

application performance by 2.2–12.7×. A more detailed analysis using a simple experimental setup

and thought experiments is presented in Section 5.8.4 and Section 5.8.5.

5.5. NoC-based System and Monolithic System

In this chapter, we use the enhanced fast separate compilation framework from Chapter 4 as the

NoC-based system. Therefore, in addition to Hierarchical PR pages from Chapter 3, the NoC-based

66

system supports multiple NoC interfaces to a single operator, multiple clock frequencies (200MHz–

400MHz), clean PR regions to remove static routing over the PR regions, and page assignment based

on recursive bi-partitioning. The assumption in our fast incremental refinement strategy is that the

NoC-based system can quickly explore the design points that the monolithic system would have

explored, so using multiple NoC interfaces or merging operators that suffer from limited bandwidth

would help to make a smooth continuum. FIFO counter logic explained in Section 5.4 is embedded

in the NoC interface to support profiling capability.

The monolithic system directly connects operators with FIFOs as previously shown in Figure 5.1 (b).

The source codes for the NoC-based system and monolithic system are identical, and the mono-

lithic system has a top wrapper module that instantiates all the operators, FIFOs, and FIFO

counter logic. Similar to the NoC-based system, operators can run at different clock frequencies

(200MHz–400MHz). HLS for each operator is done in parallel. After all HLS runs, our framework

automatically generates a top wrapper file (Verilog) and performs logic synthesis monolithically.

Then, the generated netlist is linked with (Vivado’s link_design command) the monolithic over-

lay which contains similar AXI Interconnect (runs 300MHz) and peripheral infrastructure to the

NoC-based system. The rest of the placement, routing, and bitstream generation are also done

monolithically.

5.6. Automated DSE Case Study

Stall counters and full counters in Section 5.4 are useful when users decide on the next design

point in incremental refinement scenario. We showcase the automated DSE case study that entirely

removes user’s intervention in the loop and automatically chooses the next design point based on

the runtime execution on the hardware.

5.6.1. DSE Experiment Overview

Figure 5.4 shows the overview of our automated DSE experiment. The inputs of the automation

system are the HLS source code generator, parameter design-space (params.json), and parameter

annotation param_annotate.json. An example of HLS source code generator is an open-source

framework like FINN from AMD Research [92, 16]. An example of params.json for one of the

67

HLS src

code

generator

Results

Database

params.json
params_annotate.json

Parallel HLS

Parallel impl,

bitGen

Page Assign

(isFit)

Test on FPGA

cur_param.json

- Counters
- Performance
 (latency, accuracy)

Parallel Syn

Monolithic Syn,

Impl, bitGen

NoC-based

Monolithic

NoC

done?

Bottleneck Identification,

Next Design Point gen.

Tuner

Figure 5.4: Automated DSE Experiment Overview

CNN application from FINN is shown in Listing 5.1. Because both the NoC-based system and

the monolithic system support different clock frequencies for kernel operators, kernel clock is one

parameter. Parameters like SIMD1_conv_2 and PE1_mva_2 control the degree of parallelism in the

operators generated by FINN. Possible values for these parameters are listed in Listing 5.1. The

goal of DSE could be different metrics. One example of a metric is application execution latency

for the input data. In addition to the application latency, Optical Flow and Digit Recognition in

Section 5.7.4 have a varying accuracy with different parameter values. Users should specify which

parameter is related to which metric in param_annotate.json. For example, Digit Recognition has

{“PAR_FACTOR”: [“latency”], “K_CONST”: [“accuracy”]} in param_annotate.json to indicate

that different values of “PAR_FACTOR” could potentially improve latency and different values of

“K_CONST” could improve accuracy. Other potential metrics include resource utilization, power

consumption, or a combination of multiple metrics like throughput per unit power. The reason

why each parameter has a list of elements in param_annotate.json is that some parameters may

improve multiple metrics. Throughout the incremental refinement, we have cur_param.json that

record the parameters for the current design point. An example of cur_param.json is shown in

Listing 5.2.

68

1 {
2 "kernel_clk ": [200, 250, 300, 350, 400],
3 "PE1_mva_0 ": [32],
4 "SIMD1_conv_1 ": [32],
5 "PE1_mva_1 ": [32],
6 "SIMD1_conv_2 ": [8, 16, 32],
7 "PE1_mva_2 ": [8, 16, 32, 64],
8 "SIMD1_conv_3 ": [8, 16, 32, 64],
9 "PE1_mva_3 ": [8, 16, 32, 64],

10 "SIMD1_conv_4 ": [1, 2, 4, 8, 16, 32, 64],
11 "PE1_mva_4 ": [1, 2, 4, 8, 16, 32, 64, 128],
12 "SIMD1_conv_5 ": [1, 2, 4, 8, 16, 32, 64, 128],
13 "PE1_mva_5 ": [1, 2, 4, 8, 16, 32, 64, 128],
14 "PE1_mva_6 ": [1, 2, 4, 8, 16, 32, 64, 128, 256],
15 "PE1_mva_7 ": [1, 2, 4, 8, 16, 32, 64, 128, 256]
16 }

Listing 5.1: Parameter Design-Space Example (CNN-2’s params.json)

1 {
2 "layer_0_0 ": {
3 "kernel_clk ": 400,
4 "num_leaf_interface ": 1
5 },
6 "layer_0_1 ": {
7 "PE1_mva_0 ": 32,
8 "kernel_clk ": 350,
9 "num_leaf_interface ": 1

10 },
11 "layer_1_0 ": {
12 "SIMD1_conv_1 ": 32,
13 "kernel_clk ": 300,
14 "num_leaf_interface ": 1
15 },
16 ...

Listing 5.2: Current Parameter Example (CNN-2’s cur_param.json)

HLS for each operator is run in parallel. Following our fast incremental refinement strategy (Sec-

tion 5.3), the automated DSE initially uses the NoC-based system to quickly map the design on

hardware. Then, stall counters and full counters are extracted after the application execution fin-

ishes. In both the NoC-based system and the monolithic system, the number of output data is

counted, and when the number reaches the value, OUTPUT_SIZE specified in the host code of the

application, the system sends signals to each operator to stop incrementing FIFO counters. Then,

69

FIFO counters are sent back to the host for analysis. Based on these counters, our script identifies

the bottleneck and selects the next design point. Listing 5.3 shows an example of collected stall

counters from the hardware execution. As explained in Section 5.4.4, stall counters are divided by

the kernel clock frequency to account for the fact that a higher clock frequency leads to a higher

number of counters. Along with FIFO counters, the correctness of the application or the accuracy

of the current design (Optical Flow, Digit Recognition) is evaluated in software based on the output

data after hardware execution. When the design reaches the point that the automated DSE explores

all the design-space or needs more area, it migrates to the monolithic system.

1 Normalized stalls:
2 layer_0_0 1287.055
3 layer_0_1 7827.225
4 layer_1_0 10829.755
5 layer_1_1 11637.765
6 layer_2_0 16523.355
7 layer_2_1 15396.41
8 layer_3_0 9518.235
9 layer_3_1 193.84

10 layer_4_0 22426.755
11 layer_4_1 4692.695
12 layer_5_0 29806.3
13 layer_5_1 29806.3
14 layer_last_0 28587.73
15 layer_last_1 16302.315
16 layer_last_2 32580.845
17
18 >> Bottleneck operator: layer_3_1
19 >> Param to tune: PE1_mva_3
20 >> Next parameter: 16

Listing 5.3: Runtime Execution Feedback Example (CNN-2)

5.6.2. Greedy Tuner

Our tuner used in the automated DSE case study is as simple as selecting the operator with the

lowest number of stalls and changing the operator’s design point that can improve the application

latency. In Listing 5.3’s example, layer_3_1 has the lowest normalized stall counters, so its param-

eter, PE1_mva_3 value (Listing 5.1) changes to 16. The algorithm is detailed in Algorithm 1. If the

current design point, the one that is the most recently run on hardware, leads to implementation

failure, then we revert to the previous design point. Also, if the current design point leads to worse

70

latency than the best latency recorded, then we revert to the previous design point. In some cases,

the latency did not degrade much but could be slightly worse than the best latency because of

noise. This could be the case where multiple operators need to be refined to result in better latency.

Therefore, we have a margin (MARGIN in Algorithm 1, 10% in the experiment) to account for the

noise. When we select the next design point (UPDATE_DESIGN_POINT in Algorithm 1), we first check

whether the NoC bandwidth bottleneck exists because if we do not resolve the NoC bandwidth

bottleneck immediately, we may identify the wrong bottleneck operator. If the NoC bottleneck is

not detected, then we select the next design point for the bottleneck operator. In Listing 5.3’s

case, the NoC bottleneck is not detected, so the operator with the least stalls is identified as the

bottleneck. We have a list of candidates for the bottleneck operator whose stall counters are similar

to the lowest stalls (10% in the experiment) and select the next point for the bottleneck. In the

NoC-based system, when we cannot improve the bottleneck operator anymore, then we move to

a monolithic system. In the monolithic system, when we cannot improve the bottleneck operator

anymore, we end the DSE.

As mentioned in Section 5.6.1, while we focus on improving application latency, in some cases, we

want to reach a certain bar of a different performance metric and then optimize for latency. For

example, Digit Recognition uses a K-Nearest-Neighbor (KNN) algorithm, and a larger K leads to

better accuracy but worse latency. In such cases, the users can indicate the minimum accuracy in

params.json, and our tuner will prioritize the accuracy metric first.

Some benchmarks could have almost identical operators. For example, maybe designs have data-

parallel sections where one can allocate many identical data-parallel operators. If there are 10

identical operators, even if we explore only 5 kernel frequencies available in our system (200MHz–

400MHz) not the design parameters, it would take 50 iterations. By default, our script updates

the parameter values of identical operators together since independently refining one operator at

a time would unnecessarily take a long time. Nevertheless, if the computation is data-dependent,

separately tuning each operator could be useful because one operator that has a heavy computation

load may need to run at 350MHz while another identical operator with a light load can run at

71

Algorithm 1 Identify Bottleneck and Generate Next Design Point
1: procedure update_design_point(dp, counters)
2: new_dp, is_NoC_bottleneck ← update_design_point_NoC(dp, counters)
3: if is_NoC_bottleneck then
4: return new_dp
5: else
6: bottleneck_list ← least_stalls(counters, MARGIN)
7: for operator in sorted bottleneck_list do
8: for new_dp in operator’s dp_space do
9: if not visited(new_dp) then

10: return new_dp
11: return None
12: end procedure
13:
14: procedure gen_next_design_point(dp, counters, result)
15: Save the dp, counters, results ▷ dp: Design Point
16: if current impl failed then
17: dp, counters ← revert_to_prev_dp()
18: else
19: if latency×(1-MARGIN) > best_latency then
20: dp, counters ← revert_to_prev_dp()
21: if latency < best_latency then
22: best_latency ← latency
23: new_dp ← update_design_point(dp, counters)
24:
25: if NoC based flow and new_dp is None then
26: Move to Monolithic flow
27: else if Monolithic flow and new_dp is None then
28: DSE is done
29: end procedure

72

200MHz. In Section 5.7’s Rendering benchmark, we will show the DSE results of both approaches.

What is not shown in Algorithm 1 is how the automated DSE script handles the implementation

failure. In the NoC-based system, the reasons of implementation failure could be: (1) there is no

valid page assignment available, (2) the tool cannot place all the elements or cannot route completely

in an assigned page, and (3) the tool can route completely but violates timing. In the case of (1),

our DSE script directly moves to a monolithic system, not going through Algorithm 1 because (1)

occurs due to limited resources available in the NoC-based system. In the case of (2), our script

tries larger pages (double or quad) for the operators that fail in implementation. If (2) occurs with

the largest size of the PR page, then our script moves to the monolithic system. In the case of (3),

our script uses Algorithm 1 to revert to the previous design point, and it finds the next design point

and tries it.

5.7. Evaluation

In this section, we evaluate the incremental refinement strategy with automated DSE case studies.

The “incremental flow” refers to DSE that uses our fast incremental strategy introduced in Sec-

tion 5.3, and the “monolithic flow” refers to DSE that uses a monolithic system throughout. We

evaluate how both incremental flow and monolithic flow improve the application performance with

our bottleneck identification. We also compare both flows in DSE time.

5.7.1. Experiment Setup

The target device is AMD ZCU102 evaluation board featuring UltraScale+ ZCU9EG FPGA. We

use ZCU102 DFX platform [103] for the NoC-based system as we partially reconfigure each PR

page separately in parallel. In the ZCU102 DFX platform we use, the dynamic region, the area that

can be partially reconfigured, contains 262,496 LUTs, 1,752 18Kb BRAMs and 2,448 DSPs. We use

the ZCU102 platform (non-DFX platform) for the monolithic system. 274,080 LUTs, 1,824 18Kb

BRAMs and 2,520 DSPs are available in ZCU102 platform. Since we use the non-DFX platform

for the monolithic system, every time we generate a new monolithic bitstream, our DSE script

copies the newly generated image, reboots the device, and runs the application. We do not include

packaging time to create a boot image file or booting time in the monolithic flow’s compile time

73

because this overhead stems from the fact that the monolithic flow uses the non-DFX platform.

We use Vitis 22.1 including Vitis HLS and Vivado. We run the automated DSE experiments on

a workstation equipped with the 3.4GHz AMD Ryzen 9 5950X 16 Core CPU with 32 processing

threads and 128 GB of RAM.

5.7.2. NoC-based Overlay and Monolithic Overlay

Table 4.1 from the previous chapter shows the available resources in the NoC-based system’s PR

pages used in evaluation. The NoC-based system, shown in Figure 4.3, consists of 20 single-sized

pages (7,264–7,919 LUTs, 44–66 18Kb BRAMs, 44–88 DSPs), 11 double-sized pages (14,647–15,840

LUTs, 110–132 18Kb BRAMs, 131–154 DSPs) and 5 quad-sized pages (29,806–31,392 LUTs, 220–

264 18Kb BRAMs, 264–308 DSPs). One double page is not subdivided into two single pages in

the overlay used in this experiment because we had difficulties in successfully routing and closing

400MHz of timing when we subdivide all 11 double-sized pages. Total 64% of LUTs, 78% of BRAMs,

and 63% of DSPs are available in the PR pages. An Abstract Shell for each PR page is generated

accordingly, and synthesized operators are mapped to appropriate Abstract Shells with the page

assignment algorithm previously mentioned in Section 4.5. We use a BFT NoC as done in [78]. The

number of processing elements (PEs) in the NoC is 24, Rent’s parameter p [59] is 0.67, and sizes of

the packet and payload are 49 bits and 32 bits respectively.

Two PEs are used for the NoC configuration and DMA. The BFT uses 11,297 LUTs, and other

peripherals including AXI interconnect use about 27K LUTs. The reason why the NoC in Chapter 4

(11,297 LUTs) costs less than the NoC in Chapter 3 (11,799 LUTs) despite the higher Rent’s

parameter is that in Chapter 4, the unused subtree that has 8 PEs is removed. The monolithic

overlay uses about 23K LUTs. The reason why the NoC-based system uses slightly more resources

than the monolithic system in the static overlay (27K (excluding NoC) > 23K) is that the NoC-based

system has two static DMA operators and small FIFOs that generates almost-full signals.

5.7.3. Implementation Directives

AMD Vivado supports different directives in the implementation phase. For example, place_design

has 18 directives, and route_design has 8 directives [7]. These directive options could be included

74

in the design-space as done in [53, 106, 93], but we use ExtraTimingOpt and EarlyBlockPlacement

for place_design’s directive and Explore for route_design’s directive.

In the NoC-based flow, we could have different implementation directives for different operators. For

example, if the implementation for a certain PR page slightly violates timing, we can explore different

directives for the page. However, the monolithic flow allows a single directive per application as

the design is monolithically placed and routed. Finer-grained tuning in the NoC-based flow could

lead to better performance in the NoC-based flow, and we may need to reconsider the continuum

from the NoC-based system to the monolithic system if we want to use our incremental refinement

strategy. A related issue is further discussed in Section 7.6.

5.7.4. DSE Time and Performance

Figure 5.5, Figure 5.6, and Figure 5.7 show the benefit of our incremental refinement strategy in DSE

time. The incremental strategy uses the NoC-based fast compile and then migrates to the monolithic

system (green), and the monolithic flow monolithically compiles the design for the entire DSE (red).

Compilations with the NoC-based system are marked as × and those with the monolithic system

are marked as as . Both the NoC-based system and the monolithic system use FIFO counters to

identify the bottleneck as discussed in Section 5.4. Figure 5.5, Figure 5.6, and Figure 5.7 record the

best kernel latency, so if the implementation fails or does not improve the kernel latency, the best

kernel latency so far is marked. Table 5.1 shows the resource utilization of the incremental strategy

at different stages: the initial design point (Init: application + NoC interfaces) with the NoC-based

flow and the final design point after the monolithic flow is over (Mono Final: application + AXI

interconnect + peripherals). The reason why “Mono Final” data for Rendering is not available is

that the final design point of the NoC flow did not meet the timing for the monolithic system. In

such cases, the final design point of the NoC flow is the best design, superior to the final design

point of the monolithic-only flow. Table 5.1 also shows improvement in the application latency and

DSE time. Since we consider the design that matches the minimum accuracy as a valid design for

Digit Recognition and Optical Flow, the latency improvement is calculated as the latency achieved

by the monolithic flow that first matches the minimum accuracy divided by the latency achieved by

75

the final design of the fast incremental strategy. For isFit classifiers (Section 4.6) in the NoC-based

system’s page assignment algorithm, the recall threshold of 0.96 is used in the experiments.

Table 5.1: Resource Utilization and DSE Results

Benchmarks LUT % FF % BRAM % DSP % Latency
Improvement

Speedup in
DSE time

Rendering† Init 4 2 9 0 3.8× 2.5×Mono Final 20 12 11 1

Rendering
Init 3 2 6 0

3.9× 1.8×NoC Final 15 7 14 1
Mono Final - - - -

Digit Recognition Init 9 5 21 0 12.7× 1.3×Mono Final 58 34 97 0

Optical Flow Init 7 4 11 5 3.8× 0.9×Mono Final 15 12 14 10

Optical Flow‡ Init 7 4 11 5 3.9× 1.4×Mono Final 14 10 13 4

CNN-1 Init 13 6 11 0 2.2× 2.7×Mono Final 19 13 13 0

CNN-2 Init 17 8 11 0 2.2× 2.3×Mono Final 25 15 13 0

CNN-3 Init 17 8 11 0 2.2× 1.7×Mono Final 31 16 16 0

Rendering†: Rendering when identical operators are separately tuned
Optical Flow‡: Optical Flow with a lower accuracy target

Rendering

The design-space of the user parameters for Rendering from Rosetta benchmarks [109] includes

parallelization factor for rasterization function and zculling function. As stated in Section 5.6,

by default, we tune identical operators together. For example, zculling’s parallelization factor

of 4 results in four zculling operators, and when one of the zculling operator is identified as a

bottleneck, the tuner increases the clock frequency for all four identical operators together. However,

data-dependent applications like Rendering may require independent tuning for identical operators

even if independent tuning takes longer. Figure 5.5’s “Rendering” (without †) is the DSE results

when identical operators are tuned together, and Figure 5.5’s “Rendering†” is the DSE results when

identical operators are refined separately.

76

B
e

s
t
K

e
rn

e
l
L
a

te
n
c
y
 (

m
s
)

DSE time (seconds)
NoC → Monolithic

Only Monolithic

0

0.5

1

1.5

2

2.5

0 2000 4000 6000 8000 10000

Rendering

0

0.5

1

1.5

2

2.5

0 5000 10000 15000 20000

Rendering†

Figure 5.5: DSE Results for Rendering
Rendering†: Rendering when operators are separately tuned.

77

Table 5.2 illustrates each step of our incremental strategy in Figure 5.5’s Rendering†. For the first

few iterations, our greedy tuner increases the parallelization factor for rasterization function and

zculling function, generating new operators, and this is why the number of parallel compile runs

increases. When the design parameters are all explored, clock frequencies are explored. We can

see that the bottleneck initially exists in rasterization, and as we improve rasterization, the

bottleneck moves to zculling. In the iteration count of 23, the implementation of zculling_i2

violates timing, and in this case, it marks 300MHz as visited and tries the next design point, the

clock frequency of 350MHz because zculling_i2 is still the bottleneck operator. After the iteration

count of 32, our system indicates that zculling_i3 is the bottleneck with the lowest number of

stalls, but at this point, we have already explored all the design-space for zculling_i3. Thus,

we migrate to the monolithic with exactly the same parameter values (denoted as “Prev config.”

in Table 5.2). After the iteration count of 33, it indicates rasterization_i* and zculling_i3

as the bottlenecks. Even if 400MHz clock of zculling_i3 failed in the NoC-based flow, we give

another try in the monolithic system in the iteration count of 34. DSE finishes after the iteration

count of 34 because while the final design still points to rasterization and zculling as the

bottlenecks, rasterization operators already reach the maximum kernel frequency and zculling

fails at 400MHz. Our strategy achieves 1.8× and 2.5× faster DSE time in Figure 5.5, improving

3.9× and 3.8× in application latency respectively. The iteration count of 33 and 34 are repetitive;

we explore the same design point in the monolithic system which was already explored in the

NoC-based system. However, to make sure that the discrepancy between our incremental strategy

and the monolithic flow is minimal, we rerun the same configuration and retry the failed design

points on the monolithic system. Our approach still achieves faster tuning by iterating many initial

design points within 2–3 minutes using the fast NoC-based system. The DSE trace for Rendering

is appended in Table A.1.

78

Table 5.2: Fast Incremental Refinement DSE Trace for Rendering†

Iteration
Count

Compile
Time Bottleneck Design Point Metric Latency Best # parallel FlowLatency runs

1 237s None init - 2.23ms 2.23ms 5 NoC
2 241s rast2_i1 PAR_RAST = 2 lat. 1.55ms 1.55ms 4 NoC
3 273s zculling_i1 PAR_ZCUL = 2 lat. 1.27ms 1.27ms 8 NoC
4 270s rast2_i1 PAR_RAST = 4 lat. 1.13ms 1.13ms 9 NoC
5 320s zculling_i2 PAR_ZCUL = 4 lat. 0.81ms 0.81ms 13 NoC
6 170s rast2_i1 clk = 250MHz lat. 0.81ms 0.81ms 1 NoC
7 195s rast2_i2 clk = 250MHz lat. 0.81ms 0.81ms 1 NoC
8 131s rast2_i4 clk = 250MHz lat. 0.81ms 0.81ms 1 NoC
9 191s zculling_i3 clk = 250MHz lat. 0.78ms 0.78ms 1 NoC
10 189s rast2_i3 clk = 250MHz lat. 0.78ms 0.78ms 1 NoC
11 197s rast2_i1 clk = 300MHz lat. 0.78ms 0.78ms 1 NoC
12 186s rast2_i2 clk = 300MHz lat. 0.78ms 0.78ms 1 NoC
13 144s rast2_i4 clk = 300MHz lat. 0.78ms 0.78ms 1 NoC
14 184s rast2_i3 clk = 300MHz lat. 0.77ms 0.77ms 1 NoC
15 204s zculling_i3 clk = 300MHz lat. 0.76ms 0.76ms 1 NoC
16 144s zculling_i2 clk = 250MHz lat. 0.74ms 0.74ms 1 NoC
17 154s zculling_i4 clk = 250MHz lat. 0.69ms 0.69ms 1 NoC
18 182s rast2_i1 clk = 350MHz lat. 0.69ms 0.69ms 1 NoC
19 186s rast2_i2 clk = 350MHz lat. 0.69ms 0.69ms 1 NoC
20 140s rast2_i4 clk = 350MHz lat. 0.69ms 0.69ms 1 NoC
21 197s rast2_i3 clk = 350MHz lat. 0.69ms 0.69ms 1 NoC
22 199s zculling_i3 clk = 350MHz lat. 0.68ms 0.68ms 1 NoC
23 150s zculling_i2 clk = 300MHz lat. - 0.68ms 1 NoC
24 173s zculling_i2 clk = 350MHz lat. 0.67ms 0.67ms 1 NoC
25 157s zculling_i4 clk = 300MHz lat. 0.62ms 0.62ms 1 NoC
26 189s rast2_i1 clk = 400MHz lat. 0.62ms 0.62ms 1 NoC
27 193s rast2_i2 clk = 400MHz lat. 0.62ms 0.62ms 1 NoC
28 139s rast2_i4 clk = 400MHz lat. 0.62ms 0.62ms 1 NoC
29 198s rast2_i3 clk = 400MHz lat. 0.63ms 0.62ms 1 NoC
30 198s zculling_i1 clk = 250MHz lat. 0.62ms 0.62ms 1 NoC
31 215s zculling_i3 clk = 400MHz lat. - 0.62ms 1 NoC
32 204s zculling_i4 clk = 350MHz lat. 0.58ms 0.58ms 2 NoC
33 728s Prev config. Prev config. lat. 0.60ms 0.58ms 1 Mono
34 865s zculling_i3 clk = 400MHz lat. - 0.58ms 1 Mono

Rendering†: Rendering when operators are separately tuned.

Digit Recognition

The design-space of the user parameters for Digit Recognition from Rosetta benchmarks includes

parallelization factor KNN algorithm and K value. In the experiment, we set the minimum accuracy

of 0.94, so our greedy tuner navigates the parameter (K value) to meet this accuracy first and then

tunes for latency. This is why we see an increase in latency for the first four iterations. Our strategy

achieves 1.3× faster DSE time compared to the monolithic flow while improving 12.7× in application

latency.

79

B
e

s
t
K

e
rn

e
l
L
a

te
n
c
y
 (

m
s
)

DSE time (seconds)
NoC → Monolithic

Only Monolithic

0

20

40

60

0 5000 10000 15000 20000 25000

0

4

8

12

16

0 500 1000 1500 2000 2500 3000 3500 4000

Digit Recognition

Optical Flow‡

0

5

10

15

20

25

0 1000 2000 3000 4000 5000 6000 7000

Optical Flow

Figure 5.6: DSE Results for Digit Recognition and Optical Flow
Optical Flow‡: Optical Flow with a lower accuracy target.

80

In Digit Recognition, our strategy shifts to the monolithic system relatively quickly compared to

other benchmarks, and this is because our tuner explores the user parameters (parallelization factor)

first and then explores kernel frequencies. In Digit Recognition, we have 10 identical operators for

the entire tuning and tune them together. The NoC-based system reaches to the parallelization

factor that requires more BRAMs than available in the PR pages, and the design is migrated to

the monolithic system. Then, different clock frequencies are all explored in the monolithic system,

leading to a long tail in Figure 5.6. The DSE trace for Digit Recognition is appended in Table A.2.

Optical Flow

The design-space of the user parameters for Optical Flow from Rosetta benchmarks includes par-

allelization factor and width of OUTER_WIDTH variable that affects the accuracy of the application.

Similar to Digit Recognition, it takes three iterations to reach the user-defined minimum accuracy

and then tunes for the latency. Optical Flow is the application that our incremental strategy takes

longer than the monolithic flow to reach the final design. In the incremental strategy, for the total

11 iterations spent with the NoC-based flow, 3 of them were to mitigate the limited NoC bandwidth

by merging operators (Section 4.1.2). These three iterations are “extra” that are not necessary for

the monolithic flow. Moreover, as the operators are merged to resolve the NoC bottleneck, the size

of the merged operator becomes large, and the benefit of the fast separate compilation approach

is reduced. Monolithic flow identifies one obvious bottleneck operator (tensor_weight_y) which is

still the bottleneck when it is tuned to run with the maximum 400MHz. Optical Flow‡ is the version

when the accuracy target is relaxed so that OUTER_WIDTH variable does not increase and does not

cause NoC bottleneck in the DSE. In this version, our strategy achieves 1.4× faster DSE time than

the monolithic flow. The DSE traces for Optical Flow benchmarks are appended in Table A.3 and

Table A.4.

CNN

Other than Rosetta Benchmarks, we use FINN open-source framework [92, 16] to generate Con-

volutional Neural Network (CNN) benchmarks. As the input of the separate FPGA compilation

framework is a dataflow graph, FINN, which generates the streaming architecture naturally fits with

81

the separate compilation.

FINN is an end-to-end framework that generates HLS codes for the input architecture and a bit-

stream in the end. In our demonstration, we use FINN to generate HLS codes and run the compi-

lation using our separate compilation framework. In the generated HLS codes, performance and re-

source utilization for each layer can be controlled by parameters like PE and SIMD, and if target_fps

is given, FINN generates HLS codes with appropriate PE and SIMD values with FINN’s own resource

and performance models. We receive a hint from this configuration to set the starting point of

the applications instead of starting from the minimum PE and SIMD. For example, PE and SIMD of

the first two convolution modules and one matrix multiplication module are maxed out from the

beginning as previously shown in Listing 5.1.

Based on [92], we create small CNNs with 6 convolutional layers and train the networks for CIFAR-

10 dataset. CNNs consist of three successions of two 3×3 convolutional layers followed by one 2×2

maxpool layer. There are two fully connected layers in the end. The size of convolutional channels

are 32, 32, 64, 64, 128, and 128. CNN-1 has 1 bit for both weight quantization and activation

quantization, CNN-2 has 1 bit for weight and 2 bits for activation, and CNN-3 has 2 bit for both

weight quantization and activation quantization. The design-space of the user parameters for CNN

benchmark includes SIMD values for convolution modules and PE values for matrix multiplication

modules. Figure 5.7 shows that our DSE system achieves 1.7–2.7× faster DSE time compared to the

monolithic flow while improving 2.2× in application latency. The starting configuration is set by

FINN assuming a single clock for all the operators. During DSE, as we increase the frequency of the

bottleneck layer, the bottleneck moves to the different layer, exploring new SIMD values or PE values.

The final designs in both CNN-1 and CNN-2 identify the first convolutional layer as the bottleneck

operator which already reaches the maximum SIMD value and maximum clock frequency. Monolithic

flow in CNN-3 fails to run the first convolutional layer at 400MHz and cannot visit other design

points after that. The incremental flow in CNN-3 successfully runs the first convolutional layer at

400MHz, visits other design points, and identifies the first convolutional layer as the bottleneck,

which already reaches the maximum clock frequency. Therefore, in CNN-3, the monolithic flow

82

0

10

20

30

40

0 2000 4000 6000 8000 10000 12000 14000 16000

B
e

s
t
K

e
rn

e
l
L
a

te
n
c
y
 (

m
s
)

DSE time (seconds)
NoC → Monolithic

Only Monolithic

0

10

20

30

40

0 5000 10000 15000 20000

CNN-2

0

10

20

30

40

0 2000 4000 6000 8000 10000 12000 14000 16000

CNN-1

CNN-3

Figure 5.7: DSE Results for CNN

83

3_1

N
o
C

2_0

2_1 3_0 1_1

4_1 4_0 1_0

5_1 5_0 0_1

PS

L_1 L_2

L_0

0_0

PE=8 → PE=16

3_1

N
o
C

2_0

2_1 3_0 1_1

4_1 4_0 1_0

5_1 5_0 0_1

PS

L_1 L_2

L_0

0_0

200MHz → 250MHz

3_1

N
o
C

2_0

2_1 3_0 1_1

4_1 4_0 1_0

5_1 5_0 0_1

PS

L_1 L_2

L_0

0_0

PE=1 → PE=2

3_1

N
o
C

2_0

2_1 3_0 1_1

4_1 4_0 1_0

5_1 5_0 0_1

PS

L_1 L_2

L_0

0_0

PE=1 → PE=2

L_1

N
o
C

2_0 3_0

L_0 5_1 1_1

5_0 2_1

4_1 4_0 3_1

PS

0_1

0_0

L_2

Already reached

the final design point

PS

Final, optimized, monolithic design

(just an illustration, not a real design)

…

Figure 5.8: Visualization of Incremental Refinement Example (CNN-2)

achieves a latency of 18.7 ms, and the incremental flow achieves a slightly better latency of 16.6 ms.

The DSE traces for CNN benchmarks are appended in Table A.5, Table A.6, and Table A.7.

Figure 5.8 visualizes how our incremental flow iterates design points quickly in the NoC-based

system and migrates to the monolithic system for the final design. Circled pages are the bottleneck

operators, annotations show the parameter values for the next design point in each step. The final

design point shows that 14 operators are monolithically compiled.

5.7.5. Compile Time Analysis

Figure 5.9 shows the compile time breakdown for both the monolithic flow and the incremental

strategy. Time to read Vivado design checkpoints and phys_opt_design is omitted in Figure 5.9

for brevity. As expected, the incremental strategy reduces compile time in all phases from HLS to

bitstream generation except for the Optical Flow benchmark in which the NoC-based system spends

too many iterations to resolve the NoC bandwidth bottleneck.

84

C
o
m

p
ile

 T
im

e
 (

s
)

mono
NoC

mono

→

mono
NoC

mono

→

mono
NoC

mono
→

mono
NoC

mono

→

mono
NoC

mono

→

mono
NoC

mono

→

mono
NoC

mono

→

mono
NoC

mono

→

0

5000

10000

15000

20000

25000

rendering rendering no i digit rec optical flow 48 optical flow 16 CNN1 CNN2 CNN3

HLS Syn Opt Place Route Bitstream

Figure 5.9: Compile Time Breakdown

In CNN benchmarks, HLS takes 16–20% of the entire compile with our strategy whereas HLS takes

only 3–5% for other applications. Long HLS runtime in FINN-generated HLS codes is a known issue

which the authors in [4] resolve with “RTL weights” instead of embedding weight constants in HLS

codes. If HLS runtime decreases with RTL weights, we expect to see even more speedup in DSE

time. For example, if we exclude HLS time in DSE time, our incremental strategy achieves 2.9×

faster DSE time for CNN-1 benchmark. While we can support RTL weights for necessary modules,

we keep all the source codes at the HLS level to be consistent with other benchmarks. For CNN-3,

the reason why HLS time is longer in the incremental flow is that the monolithic flow failed earlier

in the implementation than the incremental flow as explained before.

5.7.6. Incremental Compilation

Figure 5.10 shows the distribution of number of parallel compile jobs in the NoC-based system to

show that the incremental strategy recompiles only necessary operators just like software compi-

85

Rendering
Rendering

Digit Rec.
Optical

Optical
CNN-1

CNN-2
CNN-3

2

4

6

8

10

12

14

N
um

be
r o

f
pa

ra
lle

l c
om

pi
le

s

Figure 5.10: Number of Parallel Incremental Page Compile Jobs in the NoC-based System

lation. In most of the benchmarks, only one operator is incrementally refined in the NoC-based

system except for Digit Recognition in which 10 identical operators are tuned together throughout

the DSE. The reason why the number is not always 1 is that the first compilation runs multiple

compile runs in parallel for all operators. If new operators are generated with a new design point

(e.g. parallelization factor in Rendering), these new operators need to be compiled together. If

the page assignment changes because the newly compiled operator consumes more resources than

before, all operators with the new PR pages need to be placed and routed.

5.8. Discussion

5.8.1. Bottleneck Identification and Incremental Refinement Strategy

The motivation of the previous works on fast incremental compilation on FPGA is that when there

is a step-by-step refinement in the design, the entire design does not need to be recompiled. But the

key missing component is how to identify the slow operator because design parameters and synthesis

options (e.g. clock frequency) together create a large design-space. Our experimental results show

that our fast bottleneck identification (1) guides the users or the automation through the impactful

design points that decrease application latency for both NoC-based and monolithic design flows, and

(2) our incremental compilation reduces DSE time by recompiling only changed operators. Initial

working designs are available in minutes, and improved designs become available every few minutes.

86

Except for Optical Flow, the NoC-based incremental compilation produces lower latency designs

than the purely monolithic flow for any compile time budget (the incremental curves are under

the monolithic curves). Despite the limitations of the NoC platform, the final performance of the

monolithic designs accelerated by the NoC-based flow in the early iterations is comparable to the

performance of the final, monolithic-only optimization.

In Optical Flow, optimizations to repair NoC-bandwidth limitations eliminate the compile time

benefits of the incremental compilation scheme. While we currently use a single NoC-based sys-

tem in the experiments, we can use different NoC-based overlays to support different bandwidth

requirements per application as mentioned in Section 3.6.1.

One challenge in the idea of refining one operator at a time is that the implementation results can

be noisy; sometimes an implementation for one design is not successful, but an implementation

for a more complicated design could be successful. For example, in the CNN-3 benchmark, the

monolithic flow fails to run the first convolutional layer at 400MHz and stops the DSE because our

automation indicates it as the bottleneck but cannot improve it. However, we have seen that this is

not a final, optimized design point. If we increase the parallelization factor for an unrelated operator

or run the unrelated operator at a higher clock frequency, suddenly the tool may successfully meet

the timing for the entire design in the monolithic system, running the first convolutional layer at

400MHz. In fact, for the CNN-3, our incremental flow outputs the final, monolithic design which

runs the first convolutional layer at 400MHz. In the monolithic system, even a minor change in

the design impacts the entire design. Such changes, even if they make the design seemingly more

complex, may unexpectedly enable the tool to successfully place and route the design. In case of

small negative slacks in timing, one solution would be to try different directives as discussed in

Section 5.7.3.

5.8.2. Synergy with a Model-based DSE

Although we showcase that our incremental strategy can be integrated with performance/resource

models in CNN benchmarks the idea can be generalized. We can categorize (1) applications that

have to be evaluated in runtime with real data because of data-dependent functions (e.g. Rendering)

87

and (2) applications that can have reasonably good starting points from model-based methods

(CNNs). In (2) case, as shown in CNN benchmarks, model-based methods can reduce the design-

space so that the fully mapped, NoC-based system can start from a realistic design.

5.8.3. Limitations of a Greedy Tuner

The greedy tuner in Section 5.6.2 may be stuck in the local minima. For example, when improving

the application performance requires refining multiple operators, any degradation in application

latency at a given design point prevents the greedy tuner from progressing. Overcoming such

limitations requires a more sophisticated tuning algorithm that is capable of escaping local minima,

and such algorithm requires significantly more design points than our case studies. For such an

algorithm, our fast compilation framework is not sufficient because it still takes 2–3 minutes to

evaluate a single design point, not less than a second. In this case too, the combination of a

synthesis-based DSE like ours and a model-based DSE (Section 5.8.2) could be useful. We can

use a model-based DSE to explore the design points, and periodically, we should launch our fast

separate compilation framework to ensure that the current design point is consistent with the model

predictions in terms of application performance, probing information, and resource utilization.

Another future direction to address the limited number of design points in a greedy tuner is to

compile multiple operators in the cloud, rather than compiling one operator at a time. These

operators are a set of operators that are “likely” to be refined with a more sophisticated tuning

algorithm. With this approach, each iteration does not have to take a few minutes but could be

less than a second, the time to partially reconfigure with the pre-generated bitstream. More data

points generated with this approach could enable a more advanced tuning algorithm.

5.8.4. Analysis on FIFO Counters

In Section 5.4, our bottleneck identification scheme is explained with a high-level intuition. In this

section, we present simulation results for different cases to elaborate on our strategy. Figure 5.11

shows the experiment setup. There are a sender operator, a receiver operator, and two asynchronous

FIFOs. In a real application (both the NoC-based system and the monolithic system), a sender and

a receiver should have both input FIFO and output FIFO. In this simple experiment setup, a sender

88

rd
y

D
W

v
ld clk_0

senderreceiver

vld_NoC

rdy_NoC

clk_NoC

(400MHz)

data

d
a
ta v
ld

rd
yclk_1

32b

D
W

d
a
ta

Figure 5.11: FIFO Counter Analysis Experiment Setup

has an output FIFO only, and a receiver has an input FIFO only. The NoC switches are omitted; the

sender’s output FIFO and the receiver’s input FIFO are directly connected to handshaking signals.

There are five parameters for different experiment configurations. The first one is datawidth for

the operators, which is labeled with DW in the Figure 5.11. We can also configure the sender’s write

initiation interval (II) and the receiver’s read II. If the sender’s II is 1, it means that the sender

outputs the data every cycle, and if the value is 2, it means that the sender outputs the data every

two cycles. Finally, the sender and receiver can run at different clock frequencies while the NoC

runs at fixed 400MHz, reading from the sender’s output FIFO and writing to the receiver’s input

FIFO.

Figure 5.12, Figure 5.13, and Figure 5.14 show the screenshots of simulation results for different

configurations, and the screenshot is labeled with (Datawidth, sender’s II, receiver’s II, sender’s

clock frequency, receiver’s clock frequency). We use stall counters (Section 5.4.1, Figure 5.3 (a)) to

identify the bottleneck operator, and stall counters are related to input FIFO’s empty counter and

output FIFO’s full counter. In Figure 5.11’s setup, the stall counter for the sender is equivalent to its

output FIFO’s full counter because we assume there’s no stall in the sender’s input FIFO. Similarly,

the stall counter for the receiver is equivalent to its input FIFO’s empty counter because we assume

89

there’s no stall in the receiver’s output FIFO. The results for the experiments are summarized in

Table 5.3, and the detailed explanations are followed in the next sections.

Table 5.3: Summary of Experiment Results for FIFO counters

Configuration
(DW, sender’s II, receiver’s II, Fsender, Freceiver)

Bottleneck Operator NoC BW bottleneck

(32, 1, 1, 200MHz, 200MHz) not detected not detected
(correct) (correct)

(32, 1, 1, 200MHz, 400MHz) sender not detected
(correct) (correct)

(32, 1, 1, 400MHz, 200MHz) receiver not detected
(correct) (correct)

(64, 1, 1, 200MHz, 200MHz) not detected not detected
(correct) (correct)

(64, 1, 1, 200MHz, 400MHz) sender not detected
(correct) (up to interpretation)

(64, 1, 1, 400MHz, 200MHz) - detected
(correct)

(128, 1, 1, 200MHz, 200MHz) - detected
(correct)

(128, 1, 1, 200MHz, 400MHz) - detected
(correct)

(128, 1, 1, 400MHz, 200MHz) - detected
(correct)

(128, 2, 2, 200MHz, 200MHz) not detected not detected
(correct) (correct)

Datawidth = 32 Case

In Figure 5.12 (a), the data can be transferred at a full rate. We know that both the sender

and receiver do not stall because the sender’s full counter and the receiver’s empty counter do not

increment. Therefore, neither the sender nor the receiver is identified as a bottleneck, and this

bottleneck identification is correct. There is no NoC bandwidth bottleneck, and our approach,

which uses full counters to detect NoC bandwidth bottleneck (Figure 5.3 (b)), should also work as

intended.

In Figure 5.12 (b) too, the data can be transferred at a full rate. In this case, the receiver stalls, and

we can see that the input FIFO’s empty counter, which is equivalent to the receiver’s stall counter

in our experiment setup, increments. Therefore, the receiver should have higher stall counters than

the sender, and the sender will be identified as a bottleneck. The sender is the correct bottleneck

in Figure 5.12 (b) because the receiver consumes data faster than the sender produces the data.

90

We normalize the counters by dividing the counters by the operating frequency, but even after the

normalization, the sender is correctly identified as a bottleneck in Figure 5.12 (b).

Similarly, in Figure 5.12 (c), the sender’s stall counter should be higher than the receiver’s stall

counter, and the receiver will be correctly identified as a bottleneck. Our system still does not

detect any NoC bandwidth bottleneck in both Figure 5.12 (b) and Figure 5.12 (c), and this is

correct because the NoC can transfer 32b of data at a frequency of 400MHz.

Datawidth = 64 Case

In Figure 5.13 (a), the data can still be transferred at a full rate because the NoC bandwidth (32b

× 400MHz) can match the sender’s write rate (64b × 200MHz) and the receiver’s read rate (64b ×

200MHz). There is no bottleneck operator, and there is no NoC bandwidth bottleneck.

In Figure 5.13 (b), the receiver, running at 400MHz, has higher stall counters than the sender, so

the sender is correctly identified as a bottleneck operator. Our system will not detect any NoC

bandwidth bottleneck because in Section 5.4.2, we use only the full counters to identify the bottle-

neck, not the empty counters. It is true that the NoC does not keep up the rate the receiver wants

the data, so we could consider this as the case with the NoC bandwidth bottleneck. However, the

NoC already supports the full rate of the data from the sender (64 bits at 200MHz), so we conclude

that the NoC is not the bottleneck in this case. Once we refine the bottleneck operator, sender,

and then our system will assert the NoC bandwidth bottleneck. Depending on the interpretation,

others may want to assert the NoC bandwidth bottleneck in this case, and this is why we label “up

to interpretation” in Table 5.8.4 for this case. In fact, in Figure 5.3 (b), we could have considered

there exists the NoC bandwidth bottleneck if the difference in the empty counters (input FIFO’s

empty counters of B - output FIFO’s empty counters of A) is large enough. Then, our automation

would have alerted that there exists the NoC bandwidth bottleneck in Figure 5.13 (b) case.

In Figure 5.13 (c), the sender, running at 400MHz, has higher stall counters than the receiver, so

the receiver is correctly identified as a bottleneck operator. However, in this case, our system will

detect the NoC bandwidth bottleneck according to the full counter difference (Figure 5.3 (b)). Our

91

tuner prioritizes resolving the NoC bandwidth bottleneck, so it will use multiple NoC interfaces for

the sender or merge the sender and the receiver after Figure 5.13 (c)’s execution. Therefore, we will

ignore the bottleneck identification for the operator, and this is why we have “-” in Table 5.8.4 for

this case. Let us say that we merge the sender and the receiver after Figure 5.13 (c). Merging itself

does not improve the application performance, but if the merged operator runs at the maximum

clock of the frequencies of the two merged operators, the application performance improves. In this

case, after merging, if the receiver operator runs at 400MHz as well, the application performance

improves.

Datawidth = 128 Case

In Figure 5.14 (a), the data can not be transferred at a full rate, and the NoC bandwidth bottleneck

is identified with the difference in the full counters. If two operators are merged, the application

performance will improve, so the NoC bandwidth bottleneck does exist in this case. Similarly, in

both Figure 5.14 (b) and Figure 5.14 (c), the NoC bottleneck is correctly detected.

In Figure 5.14 (d), neither NoC bandwidth bottleneck nor bottleneck operator is detected. The

bottleneck identification is correct because sending 128 bits with II = 2 is equivalent to sending 64

bits with II = 1. The NoC has enough bandwidth to support the data movement, and the receiver

can receive the data at full rate.

5.8.5. Potential Limitations with the Operator-level Probing

This section introduces potential problems with the bottleneck identification that instantiates stall

counters per operator. We currently have full, empty, and read counters per each FIFO of an

operator but have one stall counter per an operator. The problem stems from the fact that the

granularity of an operator is determined by the users when they design the application. The identical

stall counters for operators could imply different information depending on the internal architecture

of the operator.

92

(a) (32, 1, 1, 200MHz, 200MHz)

(b) (32, 1, 1, 200MHz, 400MHz)

(c) (32, 1, 1, 400MHz, 200MHz)

Figure 5.12: FIFO Counter Analysis, datawidth = 32
(DW, sender’s II, receiver’s II, Fsender, Freceiver)

93

(a) (64, 1, 1, 200MHz, 200MHz)

(b) (64, 1, 1, 200MHz, 400MHz)

(c) (64, 1, 1, 400MHz, 200MHz)

Figure 5.13: FIFO Counter Analysis, datawidth = 64
(DW, sender’s II, receiver’s II, Fsender, Freceiver)

94

(a) (128, 1, 1, 200MHz, 200MHz)

(b) (128, 1, 1, 200MHz, 400MHz)

(c) (128, 1, 1, 400MHz, 200MHz)

(d) (128, 2, 2, 200MHz, 200MHz)

Figure 5.14: FIFO Counter Analysis, datawidth = 128
(DW, sender’s II, receiver’s II, Fsender, Freceiver)

95

Func_1

Func_2

stall

Func_1

Func_2

stall

This operator is unlikely to be identified as a bottleneck

➔ Incorrect bottleneck identification

This operator is unlikely to be identified as a bottleneck

➔ Incorrect bottleneck identification

Func_2 is waiting for input data, but

Func_1 is processing ➔ Func_1 can be improved

Func_2 can’t output the data, but

Func_1 is processing ➔ Func_1 can be improved

Single operator with two internal functions

Val =
Input_1.read() +
Input_2.read()

stall

This operator is unlikely to be identified as a bottleneck

➔ Correct bottleneck identification

(a) (b)

Figure 5.15: An Operator with Sub-functions

Func_1

Func_2

stall

Func_1

Func_2

stall

This operator is unlikely to be identified as a bottleneck

➔ Incorrect bottleneck identification

This operator is unlikely to be identified as a bottleneck

➔ Incorrect bottleneck identification

Func_2 is waiting for input data, but

Func_1 is processing ➔ Func_1 can be improved

Func_2 can’t output the data, but

Func_1 is processing ➔ Func_1 can be improved

Single operator with two internal functions

Val =
Input_1.read() +
Input_2.read()

stall

This operator is unlikely to be identified as a bottleneck

➔ Correct bottleneck identification

Figure 5.16: An Operator without Sub-functions

An Operator with Sub-functions

Figure 5.15 and Figure 5.16 illustrate examples of incorrect and correct bottleneck identification,

respectively, despite having similar stall counters. In Figure 5.15, a single operator consists of two

independent sub-functions. In both cases, Func_1 has room for improvement but Func_2 stalls.

In Figure 5.15 (a), Func_2 stalls because it does not receive the input data, and in Figure 5.15 (b),

Func_2 stalls because it cannot output the data. In our bottleneck identification, because one of

the inputs or the outputs stall, the stall counters for both cases are high, and in both cases, this

operator will not be identified as a bottleneck although Func_1 needs to be improved.

One may question why we assert the stall condition at least one input or output stalls. The reason

is that if we have a code segment like Input_1.read() + Input_2.read() in the operator as shown

in Figure 5.16, if either Input_1 or Input_2 is not available, it is true that this operator stalls. The

first issue with this problem is that we have a single stall counter per operator. This issue can be

easily resolved by instantiating a stall counter per each input or output port at the cost of using more

resources. Nonetheless, the second issue is that even if we have a stall counter per port, there is no

96

visibility inside the operator. If we have a stall counter for all the ports, for both Figure 5.15 (a) and

Figure 5.16 cases, we know that the second input stalls, but without visibility inside the operator,

we do not know whether the large stall counter for the second input indicates the operator’s stall

(Figure 5.16) or some subfunctions of the operator can be improved (Figure 5.15 (a)). If we can

determine whether an operator belongs to Figure 5.15 or Figure 5.16 through code analysis at the

HLS level or analysis on Intermediate Representation (IR), we can disambiguate what the high stall

counter implies.

Figure 5.15’s cases may not be the most natural granularity of an operator because we could have

created separate operators for Func_1 and Func_2. One example where users need to have inde-

pendent sub-functions in an operator is when sub-functions share some storage or buffer structure.

Figure 5.17 shows two operators, Operator_1 and Operator_2. Operator_1 consists of two inde-

pendent sub-functions, Func_1 and Func_2, and Operator_2 consists of one sub-function, Func_3.

Func_1 and Func_2 share some storage which Func_1 reads the data from, writes the data to,

and produces an output (Step 1). Then, Func_3 computes to produce an output (Step 2), which

is the input of Func_2. Finally, Func_2 reads data from the storage, writes data to the storage,

and produces the output (Step 3). In this example, Func_1 and Func_2 are independent except

that they share a data structure indicated as “Shared” in Figure 5.17. In Figure 5.15, we have

already shown that if an operator has multiple independent sub-functions, our stall counters may

not work correctly, Therefore, it is not the feedback loop that causes a problem with our bottleneck

identification but the lack of visibility inside a single operator that causes a problem as shown in

Figure 5.15. However, one scenario where users inevitably have independent sub-functions in an

operator is when multiple sub-functions share some data structure as shown in Figure 5.17, and this

creates a feedback loop between operators.

Sub-functions with Different Latencies

To further illustrate how two independent sub-functions could confuse our bottleneck identification,

in Figure 5.18, we present different cases when sub-functions have different latencies. Figure 5.18

is an extension of Figure 5.15 that has two independent sub-functions. Explanations below each

97

Func_1

Func_2

Shared

Func_3

Step 1

Step 2

Step 3 Operator_1

Operator_2

Figure 5.17: An Example of a Feedback Loop between Operators

case focus on bottleneck identification of Operator_1. We assume that there is one stall counter

per operator and we do not have visibility inside the operator.

In Case-1, Operator_1 is unlikely to be identified as a bottleneck because Input_2, the input

of Func_2, stalls. This is an incorrect bottleneck identification because if we increase the clock

frequency of Operator_1, for example, then the overall application performance is likely to improve

since Func_1 processes data faster.

In Case-2, Operator_1 is unlikely to be identified as a bottleneck because Output_1 stalls. This

may be a correct bottleneck identification because Operator_2 needs to be accelerated to improve

the overall performance.

In Case-3, Operator_1 is unlikely to be identified as a bottleneck because Output_1 stalls. This

is an incorrect bottleneck identification because Operator_1’s Func_2 needs to be accelerated to

improve the overall performance.

In Case-4, Operator_1 is likely to be identified as a bottleneck. This may be a correct bottleneck

identification because Operator_1’s Func_1 and Func_2 need to be accelerated to improve the

overall performance.

98

Func_1, slow

Func_2, fast

stall

Func_3,

fast

<Case-1: Unlikely to be identified as a bottleneck>

➔ Incorrect bottleneck identification

Func_1, fast

Func_2, fast

Func_3,

slow

< Case-2: Unlikely to be identified as a bottleneck>

➔ Correct bottleneck identification

stall

Func_1, fast

Func_2, slow

Func_3,

fast

<Case-3: Unlikely to be identified as a bottleneck>

➔ Incorrect bottleneck identification

stall
Func_1, slow

Func_2, slow

Func_3,

fast

<Case-4: Likely to be identified as a bottleneck>

➔ Correct bottleneck identification

Func_1, slow

Func_2, fast

Func_3,

slow

<Case-5: Unlikely to be identified as a bottleneck>

➔ Correct, Incorrect bottleneck identification?

stall

Func_1, fast

Func_2, slow

Func_3,

slow

< Case-6: Unlikely to be identified as a bottleneck>

➔ Correct, Incorrect bottleneck identification?

stall

Func_1, slow

Func_2, slow

Func_3,

slow

<Case-7: Likely to be identified as a bottleneck>

➔ Correct bottleneck identification

Func_1, fast

Func_2, fast

Func_3,

fast

<Case-8: Unlikely to be identified as a bottleneck>

➔ Correct bottleneck identification

stall

stall

Operator_1 Operator_2

Input_1

Input_2

Output_1

Output_2

stall

stall

stall

stall

Figure 5.18: Cases with a Feedback Loop, Sub-functions with Different Latencies

99

In Case-5, Operator_1 is unlikely to be identified as a bottleneck because Input_2 stalls. Both

Operator_1’s Func_1 and Operator_2 need to be accelerated to improve the overall performance. If

Operator_1 is not identified as a bottleneck, then Operator_2 needs to be identified as a bottleneck.

Because Operator_2 does not stall, Operator_2 is likely to be identified as a bottleneck. Once

Operator_2 is refined, the system becomes equivalent to Case-1, which is incorrect bottleneck

identification. The first bottleneck identification of Operator_2 can be considered correct, but the

design eventually results in incorrect bottleneck identification.

Case-6 is similar to Case-5. Operator_2 is likely to be identified as a bottleneck first. After refine-

ment on Operator_2, the system is equivalent to Case-3, which is incorrect bottleneck identification.

Similarly, the first bottleneck identification of Operator_2 can be considered correct, but the design

eventually results in incorrect bottleneck identification.

In Case-7, Operator_1 is likely to be identified as a bottleneck. Both Operator_1 and Operator_2

need to be accelerated to improve the overall performance, so we assume that this is a correct

bottleneck identification.

In Case-8, Operator_1 is unlikely to be identified as a bottleneck because Input_1 and Input_2

stall, and this is a correct bottleneck identification.

Sub-functions with Different Read/Write Rates

The examples in Figure 5.19 are another extension of Figure 5.15 and illustrate different cases when

sub-functions have different read/write rates. Explanations below each case focus on bottleneck

identification of Operator_1. “100:1” indicates that it takes 100 inputs every cycle to output 1

output. Similarly, “1:1” indicates that it takes 1 input every cycle to output 1 output. All other

operators not shown in the graph are assumed to have read and write rates of 1:1.

In Case-1, Operator_1 is unlikely to be identified as a bottleneck because Input_2 stalls. This is an

incorrect bottleneck identification because we need to accelerate Operator_1’s Func_1 to improve

the overall performance.

100

Func_1, 1:1

Func_2, 100:1

Func_3,

1:1

<Case-3: Likely to be identified as a bottleneck>

➔ Correct bottleneck identification

Func_1, 1:1

Func_2, 1:1

Func_3,

100:1

< Case-2: Unlikely to be identified as a bottleneck>

➔ Correct bottleneck identification

stall

Func_1, 100:1

Func_2, 1:1

Func_3,

1:1

<Case-1: Unlikely to be identified as a bottleneck>

➔ Incorrect bottleneck identification

stall

Func_1, 100:1

Func_2, 100:1

Func_3,

1:1

<Case-4: Unlikely to be identified as a bottleneck>

➔ Incorrect bottleneck identification

Func_1, 100:1

Func_2, 1:1

Func_3,

100:1

<Case-5: Unlikely to be identified as a bottleneck>

➔ Incorrect bottleneck identification?

stall

Func_1, 1:1

Func_2, 100:1

Func_3,

100:1

< Case-6: Unlikely to be identified as a bottleneck>

➔ Correct bottleneck identification?

stall

Func_1, 100:1

Func_2, 100:1

Func_3,

100:1

<Case-7: Unlikely to be identified as a bottleneck>

➔ Incorrect bottleneck identification

Operator_1 Operator_2

Input_1

Input_2

Output_1

Output_2

stall

stall

Read:Write ratio.
➔ takes 100 inputs every cycle to output 1 output

stall

stall

stall

stall

Figure 5.19: Cases with a Feedback Loop, Sub-functions with Different Read/Write Rates

101

In Case-2, Operator_1 is unlikely to be identified as a bottleneck because Input_2 stalls. This is a

correct bottleneck identification because Operator_2 needs to be accelerated to improve the overall

performance.

In Case-3, Operator_1 is likely to be identified as a bottleneck. This is a correct bottleneck identi-

fication because Operator_1’s Func_2 needs to be accelerated to improve the overall performance.

In Case-4, Operator_1 is unlikely to be identified as a bottleneck. This is an incorrect bottleneck

identification because Operator_1’s Func_1 and Func_2 need to be accelerated to improve the

overall performance.

In Case-5, Operator_1 is unlikely to be identified as a bottleneck. Operator_1’s Func_1 and Oper-

ator_2’s Func_3 both need to be accelerated to improve the performance. In this case, Operator_2

is also unlikely to be identified as a bottleneck. Therefore, we consider this as an incorrect bottleneck

identification.

In Case-6, Operator_1 is unlikely to be identified as a bottleneck. Operator_1’s Func_2 and Opera-

tor_2’s Func_3 both need to be accelerated to improve the performance. In this case, Operator_2

is likely to be identified as a bottleneck, and once Operator_2 is improved, Operator_1 can be

identified as a bottleneck. Therefore, we consider this as a correct bottleneck identification.

Lastly, in Case-7, Operator_1 is unlikely to be identified as a bottleneck. Operator_2 is also

unlikely to be identified as a bottleneck. This is an incorrect bottleneck identification.

Summary

Examples in Figure 5.18 and Figure 5.19 represent only subsets of all possible cases. In more realistic

applications, sub-functions will have different latencies and different read/write rates. The purpose

of these thought experiments is to show that when an operator contains independent sub-functions,

our stall counters may not work as intended. The root of the operator-level probing lies in the

fact that operators are designed by the users, and stall counters could imply different information

depending on the internal architecture of the operators. As stated earlier, the first step to resolve

102

this issue is to have stall counter information per port instead of per operator. The second and

more challenging step is to determine whether each input and output port are correlated or not.

With this additional information, we can treat sub-functions as independent operators if they are

uncorrelated, and we can apply the same bottleneck identification scheme based on stall counters.

5.9. Conclusions

FPGA development is different from software programming because of the lack of visibility on the

inner state of the design and slow compilation. While there exist previous works on hardware

profiling and fast FPGA compilation, both efforts need to be integrated to support a software-like

development experience for FPGAs. Our integrated stream FIFO counters automatically identify

bottlenecks that limit performance. Our case studies show that our incremental refinement strategy

using these lightweight counters and fast incremental compilation on acyclic designs iterates initial

yet important design points in 2–3 minutes and achieves 1.3–2.7× faster DSE time compared to the

monolithic compilation while improving the kernel execution latency by 2.2–12.7×.

103

CHAPTER 6

ASYMMETRY IN BUTTERFLY-FAT-TREE NOC

The key to our fast incremental refinement strategy is the continuity between the NoC-based system

and the monolithic system. What we have not discussed much is congestion within the packet-

switched network. When workloads are highly unbalanced, multiple packets may contend for limited

channels, causing some packets to experience delays. The congestion degrades the application

performance in the NoC-based system. Furthermore, the bottleneck identification based on FIFO

counters in the previous chapter may not work as intended. For example, if packets arrive late at

the input FIFO due to NoC congestion, the stall counter at the destination operator increments.

This could lead to an incorrect interpretation that the destination operator was waiting for the

slower source operator, when in reality, two operators may have been running at similar rates. The

only reason for the stall in the destination operator was NoC congestion.

While the simplest solution is to have richer switches in the NoC, this solution reserves more FPGA

resources for the NoC, widening the gap between the NoC-based system and the monolithic system.

In this chapter, to expand the design-space of the Butterfly-Fat-Tree (BFT) NoC we have used in

the previous chapters, we explore asymmetry in the BFT NoC. We aim to support heterogeneous

bandwidth, given the similar resource budget with the traditional, symmetric BFT NoC. This chap-

ter was previously published in [Dongjoon Park, Zhijing Yao, Yuanlong Xiao, and André DeHon.

Asymmetry in Butterfly Fat Tree FPGA NoC. International Conference on Field-Programmable

Technology. 2023.] [80]. I led the project and was in charge of the system implementation.

6.1. Background

While our fast separate compilation can use any NoC topology, we choose BFT NoC. Although

mesh [76, 43] may be more layout-friendly in today’s island-style FPGA routing architecture [57,

17], BFT is known to be cost-effective [66, 29, 30] and outperforms other state-of-the-art network

topologies [48].

104

t

upper

π
lower

left

lower

right

upper

right

upper

left

lower

left

lower

right

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

π π

π π

t

π π

t

π π

t

π π

t

t

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

t t

π π

π

π π

π

π π

π

π π

π

π

(a) BFT-16, p=0.5 (b) BFT-16, p=0.67

1

2

4

4

1

2

2

4Level 0

Level 1

Level 2

Level 3

Figure 6.1: t switch and π switch

t

upper

π
lower

left

lower

right

upper

right

upper

left

lower

left

lower

right

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

π π

π π

t

π π

t

π π

t

π π

t

t

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

t t

π π

π

π π

π

π π

π

π π

π

π

(a) BFT-16, p=0.5 (π-t-π-t-…) (b) BFT-16, p=0.67 (π-π-t-π-π-t …)

1

2

4

4

1

2

2

4Level 0

Level 1

Level 2

Level 3

Multiple switches
are overlapped

Figure 6.2: Symmetric BFT-16 with Different p Values

BFT has a hierarchical structure with the PEs located on the lowest level. The network packet

should contain address bits, and depending on the address bits, switches in each level determine

where the packet should be directed.

The wiring capacity of a network can be described with Rent parameter p [59] where the larger

value of p indicates the larger bisection bandwidth (IO = cnp, 0 ≤ p ≤ 1). The primitive building

blocks for BFT are t switches that have one parent port and π switches that have two parent ports

as shown in Figure 6.1. Arity refers to the number of the children ports, and in this paper, we

consider arity-2 switches like the ones in Figure 6.1 while different arity values are possible in the

BFT architecture. For example, authors in [60] show that BFT with Arity-4 can be mapped on

FPGA with less LUT cost compared to BFT with Arity-2 by utilizing wide muxes available in

modern FPGA fabric. One differentiating factor of BFT compared to other topologies is that the

bandwidth of each level of BFT can be configured by properly selecting t switches and π switches [31].

If we want more bandwidth between the specific levels, we can simply compose the layer with π

switches. This flexibility sharply contrasts with other topologies like mesh where all channel widths

need to increase together to support more bandwidth.

105

Figure 6.2 shows BFTs with 16 PEs. The width of connection between layers in Figure 6.2 represents

the communication bandwidth, and in the Fat-Tree-based topology, the communication is thicker at

the higher level in the hierarchy. Blue numbers represent the channel widths in the communication,

so in the non-lowest level in the hierarchy, there are multiple switches that make up each switching

node. BFT-16 with p = 0.67 (Figure 6.2 (b)) provides more bandwidth between level 1 and level

2 than BFT-16 with p = 0.5 (Figure 6.2 (a)). In [48], Kapre proposes localized deflection routing

to adapt the BFT routing algorithm to lightweight, bufferless Hoplite style [50, 51]. Our fast NoC-

based system [79, 99, 78, 77] also uses the packet-switched, deflection-routed BFT from [48]. In this

chapter, too, we build upon deflection-routed BFT.

BFT’s hierarchical structure offers finer-grained control on network channel bandwidth compared

to other topologies. Nevertheless, in a symmetric BFT, like the ones in Figure 6.2, since each level

is homogeneously composed of either t switches or π switches, to provide more bandwidth, all t

switches in the level are replaced with π switches, requiring more switch area. For instance, when

placed and routed on Xilinx UltraScale+ ZU9EG, BFT-16 with p = 0.67 (Figure 6.2 (b)) costs 7276

LUTs and 5991 FFs while BFT-16 with p = 0.5 (Figure 6.2 (a)) costs 6248 LUTs and 5223 FFs.

6.2. Motivation

When a graph is mapped on a BFT, one fast, heuristic-based approach is to (1) bi-partition the

graph in a way that the inter-partition communication is minimized to prevent the unnecessary

traffic over the NoC and (2) assign each sub-graph to each subtree of a BFT [49]. In section 4.5, we

use the recursive bi-partitioning to perform a fast page assignment. However, there is no guarantee

that the communication in each partition is the same. After the bi-partitioning, some portion of

the graph could require more bandwidth.

Figure 6.3 is a real example of graph workloads from [67] where one-fourth of the nodes are located

in each quadrant, and the thickness of the edge represents the communication volume. In Figure 6.3,

we use metis [54] to cluster the graph workloads into 256 parts using a recursive bisection scheme

with the objective to minimize the edge cuts. metis numbers each node, and the labels imply how

the graph is bi-partitioned. For example, the indexes from 1 to 128 belong to one bisected part,

106

<deezer-europe workload> <CA-HepPh workload>

Figure 6.3: Examples of Unbalanced Realistic Workloads after Partitioning

and the indexes from 129 to 256 belong to another bisected part. Therefore, in Figure 6.3, node

indexes from 1 to 64 are mapped to the one quadrant, indexes from 65 to 128 are mapped to another

quadrant, and so on. x and y values are randomly generated within each quadrant for each node. In

Figure 6.3, inter-partition communication is reduced with bi-partitioning (between the green nodes

and the red nodes), but the communication requirements of the one-half are heavier than the other

half. We would like to selectively provide more bandwidth to specific subtrees, but in traditional

BFT (Figure 6.2), this customization is not possible, and more bandwidth in one subtree leads to

more bandwidth in all other subtrees, consuming more FPGA resources.

6.3. Asymmetric BFT

To support heterogeneous bandwidth with the similar resource usage, we explore asymmetry in

the BFT. We define an asymmetric BFT as a BFT that has different switches in a given level.

Figure 6.4 is an example of an asymmetric BFT that has 256 PEs. The color scheme for the

switches is consistent with that of Figure 6.2, and PEs are omitted for brevity. Type 1’s subtree

consists of π-π-π-π-π-π, Type 2’s subtree consists of π-t-π-t-π-π, and Type 3’s subtree consists

of t-π-t-π-t-π-t switches. Therefore, the Type 1 subtree is denser and provides more bandwidth

for the PEs, and the Type 3’s subtree is sparser and provides less bandwidth. We expect that

this architecture leads to better performance when one partition of the graph communicates more

heavily than another.

107

…
…

…
…64 16

…
…

…
…

8

8

8 8

C

Type 3

Type 1 Type 2

Level 0

Level 1

Level 1

Figure 6.4: Example of Asymmetric BFT-256

t’

t’ t’
t

t’

t’ t’

2

t t tt
t t t t t t t t

t t t

16

8

Figure 6.5: 16-8-2 Converging Switch Built with t Switches and t− random (t′) switches
Note: The two lowest levels consist of t switches, and the upper levels consist of t− random switches.

t

t t
t

t

t t

2

t t tt
t t t t t t t t

t t t

16

8

Figure 6.6: 16-8-2 Converging Switch Built with only t Switches
Note: Only the leftmost path or the rightmost path is the desirable direction

when the packet travels from the upper level to the lower level.

108

In Figure 6.4’s example, Type 1’s subtree results in the channel width of 64 to the level 1, and Type

2’s subtree results in the channel width of 16 to the level 1. Type 3’s subtree results in the channel

width of 8 to the level 0. Thus, we need a component in the level 1 that reduces the channel width

to match the bandwidth of the top and the bottom subtrees. We introduce a converging switch that

reduces the channel width from the top subtrees to the bottom subtree.

While it is possible to build the converging switch out of the original t switches only as shown

in Figure 6.6, using only t switches would not spread out the traffic to exploit the wider channels;

instead, it would concentrate the traffic and leave portions of the rich bandwidth unused. Therefore,

we use standard t switches in the lowest level and use t− random switches (t′) in the higher levels

as shown in Figure 6.5. In the switches of deflection-routed BFT, there are the desirable direction

where the packet wants to go and the final direction where the packet ends up going if the contention

exists. As all the t switches in the converging switch belong to the same level (level 1 in Figure 6.4’s

case), in the strawman implementation of the converging switch that uses only standard t switches

(Figure 6.6), the same bits in the packet are used to specify the desirable direction in all the stages

of the converging switch. This means the desirable direction for a packet that is climbing down is

either the lower left for all the t switches or the lower right for all the t switches (colored red in

Figure 6.6), potentially causing congestion inside the converging switch. In the t− random switch,

on the other hand, the desirable downward direction ignores the destination bit and is set to the

lower left at the one cycle and set to the lower right at the next cycle, alternately. These t−random

switches in the non-lowest levels of the converging switch spread out the traffic, and in the lowest

level, the t switches send the packet based on the address bits in the packet to make sure that

the packet is delivered to the correct subtree. The only difference between a t − random switch

and a t switch is the desirable downward direction (left or right). The rest of the architecture,

like the packet arbitration, stays the same. For example, a deflected packet takes priority and is

immediately turned back in the next cycle, as done in the base deflection-routing. Because we

build on top of the deflection-routed BFT, deflection-routed scheme’s randomness already requires

reorder buffers (reassembly buffers) in PEs. Our t− random switch adds no new requirements for

reordering beyond those that already exist for the deflection-routed BFT.

109

Table 6.1: Symmetric BFT-256s (S0, S1) and Asym-
metric BFT-256s (AS0, AS1) Example (52b, single flit
packet)

LUTs Switch Composition Converging Switch
Composition LUTs

S0 122778 p = 0.5 π-t-π-t-π-t-π - -
S1 143870 p = 0.5 π-π-t-t-π-π-t - -

AS0 142896 st-0,1: π-π-π-t-π-π-c 32-32-8 15829st-2,3: t-π-t-π-t-π-t

AS1 143029
st-0: π-π-π-π-π-π-c

64-16-8 21480st-1: π-t-π-t-π-π-c
st-2,3: t-π-t-π-t-π-t

st-i: subtree-i, c: Converging switch

All the PEs in an asymmetric BFT can still communicate with each other but with higher bandwidth

on specific subtrees and lower bandwidth on other subtrees. Figure 6.5 is a converging switch that

reduces the channel width of 16 and 8 to the channel width of 2, but the architecture can be extended

to other power of two combinations, like 64-16-8 in Figure 6.4.

6.4. Methodology

Table 6.1 describes two symmetric BFTs (S0, S1) and two asymmetric BFTs (AS0, AS1) that we

use for the evaluation. These BFTs are all deflection-routed BFTs [48]. The number of PEs is

256. When BFT-256 has four subtrees with 64 PEs (st-0,1,2,3), both AS0 and AS1 have two dense

subtrees and two sparse subtrees. Subtrees of different densities are connected with a converging

switch. The switch composition column refers to the switch type from the lowest level (leftmost)

to the second-highest level (rightmost), so Figure 6.4’s asymmetric BFT corresponds to AS1. For

Rent parameter p of symmetric BFTs (S0, S1), p = 0.5 is chosen because p = 0.5 is known to be

area-universal, meaning that the networking resources are relatively well-balanced and scalable with

the computation [66, 28]. While we provide two examples of asymmetric BFTs, the idea can be

extended to any number of different subtrees with appropriate converging switches.

We run synthesis, placement and routing with Xilinx Vivado 2022.1 targeting UltraScale+ ZU9EG

FPGA to extract resource usage. Dummy PEs are attached to the NoC for testing purposes. A

packet consists of a single flit with 1 valid bit, 8 bits of PE address, an 11-bit sequence number

and 32 bits of data. The packet composition can change depending on design requirements, but it

110

should be the same for both symmetric and asymmetric BFTs for a fair comparison.

The converging switch columns in Table 6.1 shows the configuration of the converging switch and the

resource usage of the converging switch. AS1’s converging switch (channel width of 64 is converged

to the channel width of 8) has a deeper hierarchy than AS0’s (channel width of 32 is converged

to the channel width of 8), and the resource usage for the converging switch increases accordingly.

We have a script to generate Verilog codes for asymmetric BFTs, given the switch configurations.

Asymmetric BFTs for the evaluation are selected so that they consume fewer LUTs than symmetric

BFT-256 (S1) to be a fair comparison with the symmetric BFTs.

Table 6.2: Worst Negative Slack (ns) for Different Switch Types
when Placed and Routed on ZU9EG (Packet Size = 52b)

SW type clock period (ns)
1.0 1.2 1.4 1.6 1.8 2.0 2.2

t -1.21 0.012 0.174 0.244 0.381 0.459 0.585
t− random -0.181 -0.055 0.157 0.168 0.328 0.487 0.703

π -1.217 -0.878 -0.720 -0.434 -0.340 -0.003 0.053

We also run synthesis, placement and routing on t switches, t − random switches, and π switches

separately, setting the switch level as 7 (the lowest level). Table 6.2 shows the worst negative slacks

when switches are routed with different system clock speeds. Max clock frequencies of t switch,

t − random switch, and π switch are estimated as 833 MHz, 769 MHz, 476 MHz based on the

clock period and the slack. As π switch has more complex routing within the switch, max clock

frequency is slower than t switch, consistent with the results from [48]. LUT costs for t switch,

t − random switch, and π switch are 171, 172, and 285–287 respectively. FF costs are 156, 157,

and 209. The t − random switch has almost the same logic complexity as the t switch; since the

t− random is still faster than the π switch, it will not limit the clock frequency of the system with

proper floorplanning.

We use iverilog to run simulations for realistic workloads and synthetic traffic patterns. We have

an option to generate synthetic test patterns every simulation run, but for the repeatability, we

pre-generate the test patterns and use the same pattern across all BFTs. After the simulation is

111

B/W (pkt/cyc/PE)

S0

S1

AS0

AS1

0 0.1 0.2

0.4

0.6

0.8

1

1.2

1.4

T
h
ro

u
g
h
p
u
t

b
e
n
e
fi
t

Traffic ratio

(a)

(b)

0 1 2 3 4 5 6 7 8

Figure 6.7: (a): Throughput Comparison on Selected Realistic Benchmarks,
(b): Throughput Benefit (max(AS0,AS1)/max(S0,S1)) for Different Traffic Ratios (# of messages
ending in st-0,1/# of messages ending in st-2,3) in All Realistic Benchmarks

finished, we check whether the messages are all properly transferred. Then, the worst-case latency

and throughput are recorded.

6.5. Evaluation

6.5.1. Realistic Workloads

Figure 6.7 illustrates the throughput advantage of asymmetric BFTs for realistic, Graph Analytics

workloads from [67]. The datasets are undirected graphs, and each graph edge counts for two

packets, swapping the sender and the receiver. The total number of packets for each benchmark

ranges from 16K to 485K. We use metis [54] to cluster the graph into 256 parts using a recursive

bisection scheme with the objective to minimize the edge cuts. We check the number of messages

whose destination is in the dense subtree (st-0,1) and the number of messages whose destination is

in the sparse subtree (st-2,3). If the number of messages traveling to the sparse subtree is larger,

112

we simply reverse the placement so that node 0 becomes node 255, node 1 becomes node 254, and

so on. Within the dense subtree, if the number of messages traveling to st-1 is larger than st-0,

we try reversed placement as well to benefit from AS1 which offers a large bandwidth in st-0. The

number of total datasets is 60 including 32 reversed node placement versions. Thus, the number

of unique datasets is 28. The injection rate, the rate that each PE sends messages to the network,

is set to 100%, which means that all the PEs attempt to send valid packets every cycle. The

throughput (pkt/cycle/PE) is the average packet delivery rate computed as the total number of

packets divided by the total elapsed cycles, divided by the number of PEs.

Figure 6.7 (a) shows that in realistic workloads, the asymmetric BFTs can achieve up to 32% higher

throughput than the symmetric BFTs. Not all real-world applications exhibit asymmetric traffic,

and for applications where the loads are relatively balanced, it is natural that symmetric BFTs are

the better options. But even after the graph is bi-partitioned, one partition’s communication can be

heavier than another partition’s like the benchmarks in Figure 6.7 (a), and in such cases, asymmet-

ric BFTs have an advantage over symmetric BFTs. In Figure 6.7 (a), we selectively include bench-

marks that exhibit at least 10% improvement in throughput with asymmetric BFTs (musae-twt-DE,

deezer-europe, gemsec-fb-new-sites, CA-CondMat, CA-HepTh, gemsec-fb-gov).

We also evaluate the correlation (Figure 6.7 (b)) between the throughput benefit of asymmetric

BFTs and the traffic ratio of the dense subtrees (st-0,1) and the sparse subtrees (st-2,3) for all

benchmarks. Throughput benefit is computed as the maximum throughput achieved by AS0 and

AS1 divided by the maximum throughput achieved by S0 and S1. The traffic ratio is the number

of messages delivered to PEs in dense subtrees divided the number of messages delivered to PEs

in sparse subtrees. The color schemes of the markers correspond to the BFT type that performs

the best for the graph workload. Therefore, markers whose throughput benefits are less than 1 are

colored red (S0 or S1) and markers whose throughput benefits are greater than 1 are colored blue

(AS0 or AS1). musae-twt-DE that shows 32% better throughput in asymmetric BFTs has a traffic

ratio of 4.92. This is consistent with our expectation that asymmetric BFTs are better when there

exists more traffic in the dense subtrees (traffic ratio > 2.2) and there exists less traffic in the sparse

113

subtree. However, the larger traffic ratio does not guarantee the better throughput advantage, and

the traffic ratio greater than 1 does not guarantee the throughput benefit. This is because the

current traffic ratio formulation does not take into account local communication. For example, if

the number of messages delivered to PEs in the dense subtree is large, then the traffic ratio is large

in our definition. However, if these messages travel close to neighboring PEs, asymmetric BFTs are

not necessarily better than symmetric BFTs.

6.5.2. Random Traffic

To better characterize the underlying phenomena, we also evaluate asymmetric BFTs with four

different synthetic traffic patterns:

• Test-0: each PE randomly sends to another.

• Test-1: all PEs in st-0,1 are active and only 1/4 of PEs in st-2,3 are active. Each PE randomly

sends to another.

• Test-2: each PE in st-0,1 randomly sends to another PE in st-0,1. The PEs in st-2,3 randomly

send to PEs in st-0,1 with slow injection rate.

• Test-3: each PE in st-0 randomly sends to another PE in st-0. The PEs in st-1,2,3 randomly

send to PEs in st-0 with slow injection rate.

Figure 6.8 illustrates the throughput performances for symmetric BFTs and asymmetric BFTs on

different traffic patterns. The number of messages per PE is set to 1024. We see that symmetric

BFTs are better in Test-0 because the lower bandwidth in s-2,3 causes congestion in asymmetric

BFTs. Test-1 and Test-2 are the simulated scenarios that st-0,1 are more active than st-2,3. As

expected, AS0 that has more bandwidth in st-0,1 exhibits up to 46% (Test-1) and 60% (Test-2)

improved throughput than S0 and S1. Test-3 is the simulated scenario that st-0 is more active

than the others. As expected, AS1 that has more bandwidth in st-0 exhibits up to 76% improved

throughput than S0 and S1. In Test-2 and Test-3, when the slow injection rate from the sparse sub-

trees is low enough, asymmetric BFTs perform better. But as the slow injection rate increases, the

114

(b) Test-1: random traffic,

 only ¼ nodes st-2,3

(c) Test-2: random traffic,

 slow injection rate from st-2,3

0

0.1

0.2

1 10 100

B
/W

 (
p

kt
/c

yc
/P

E)

Injection rate

S0
S1
AS0
AS1

0

0.1

0.2

1 10 100

B
/W

 (
p

kt
/c

yc
/P

E)
Slow Injection rate

S0
S1
AS0
AS1

(d) Test-3: random traffic,

 slow injection rate from st-1,2,3

0

0.1

0.2

1 10 100

B
/W

 (
p

kt
/c

yc
/P

E)

Slow Injection rate

S0
S1
AS0
AS1

0

0.1

0.2

1 10 100

B
/W

 (
p

kt
/c

yc
/P

E)

Injection rate

S0
S1
AS0
AS1

(a) Test-0: random traffic

Figure 6.8: Throughput Comparison on Different Random Traffic Patterns

benefit in throughput decreases because the sparse subtrees in asymmetric BFT become congested.

6.5.3. t-random Switch

To characterize the benefits of using switches inside the converging switch as described in Section 6.3,

AS0_S and AS1_S in Figure 6.9 refer to corresponding asymmetric BFTs with a strawman imple-

mentation of a converging switch that consists of only standard t switches. In Test-1, t − random

switches significantly improve the worst-case latency (orders of magnitude) and the throughput (up

to 65%), relieving the congestion in the leftmost switches and the rightmost switches.

6.6. Discussions

6.6.1. More Design-Space for Soft NoC

There is no single best soft NoC for all applications, but there are soft NoCs with different compo-

sitions that can perform better for specific applications. We expand the design-space of soft NoC so

that users can tailor the NoC to their applications, more fully exploiting FPGA’s reconfigurability.

Unlike previous literature that recommends a specific type of BFT based on the LUT budget on the

115

1

10

100

1000

10000

1 10 100

W
o

rs
t

C
as

e
La

te
n

cy

Injection rate

AS0
AS1
AS0_S
AS1_S

(a) Worst case latency comparison (log scale),

Test-1

(b) Throughput comparison,

Test-1

0

0.05

0.1

0.15

0.2

1 10 100

B
/W

 (
p

kt
/c

yc
/P

E)

Injection rate

AS0
AS1
AS0_S
AS1_S

Figure 6.9: Benefit of t− random switches in Converging Switch for Test-1

FPGA [48, 71] independent of the application, we propose asymmetric BFT architectures that could

exhibit better throughput than symmetric BFT for applications where the loads are unbalanced.

6.6.2. Limitations

To take full advantage of asymmetric BFT, the users need to have some understanding of the

application’s traffic pattern because they need to configure the asymmetric BFT to provide more

bandwidth where needed. We believe such a constraint is acceptable as soft NoC can always be

reconfigured with other logic on FPGA. For example, when the NoC congestion is detected with the

symmetric BFT in the steady traffic pattern, the user can adopt the asymmetric BFT overlay with

proper subtrees and reconfigure the device. Because the resource utilization of symmetric BFT and

the resource utilization of asymmetric BFT are similar, users can select the NoC overlay, leaving

PEs untouched.

Ideally, based on the simulated or runtime traffic, the appropriate asymmetric BFTs can be gener-

ated within the FPGA resource budget. In this chapter ([80]), however, the configurations for the

asymmetric BFTs are the user input.

In Section 6.4, we have shown that t − random switches should not limit the overall operating

frequency of the NoC because they are faster than π switches. However, in reality, achieving

competitive frequency as the number of PEs increases is not trivial [71]. Because subtrees in an

asymmetric BFT have different resource usage and routing complexity, floorplanning is expected to

be more challenging. More studies need to be done to further investigate the operating frequency

116

of asymmetric BFT.

6.6.3. Integration with our NoC-based System

In Chapter 5’s NoC-based system [77], we use only symmetric BFT. In section 6.4 and section 6.5,

the size of asymmetric BFTs used to demonstrate the benefit is 256. We observe the asymmetric

BFT’s benefit when the number of PEs is large in the BFT NoC and when the traffic is highly

unbalanced. However, the number of PEs used in Chapter 5’s NoC-based system is only 24 and

the Rent parameter p is 0.67. For benchmarks used in Chapter 5, we have seen the cases where the

small payload size (32 bits) of the NoC limits the application performance. Nevertheless, we believe

NoC congestion is not a major issue that limits the performance because of the small size of the

NoC and reasonably good Rent parameter p = 0.67. Thus, we use a symmetric BFT in our fast

separate compilation framework and leave it as a future work to provide more NoC-based overlays

with different NoC options. Because our asymmetric BFT uses similar resources to symmetric BFT,

we can potentially have a PR region for the NoC and use the appropriate partial bitstream for the

NoC.

6.7. Conclusions

To ensure continuity from the NoC-based system to the monolithic system in our incremental

refinement, we explore the design-space of BFT NoC to support highly unbalanced workloads. We

demonstrate that given the same LUT budget, in realistic workloads and different random traffic

patterns, asymmetric BFTs with converging switches built with t − random switches can achieve

up to 32% and 76% more throughput than symmetric BFTs.

117

CHAPTER 7

DISCUSSIONS

7.1. Scalability

In Chapter 3 and Chapter 5, we evaluate our fast compilation framework with AMD ZCU102 with

ZU9EG FPGA that has about 270K LUTs. The idea can extend to larger FPGA devices that

have over a million LUTs. With a larger device, our separate compilation framework is expected

to achieve a better compilation speedup because (1) the size of the PR pages can stay small and

(2) the monolithic compilation is expected to scale superlinearly as stated in Section 2.4. The size

of single-sized PR pages can stay at 7K–8K LUTs,6 but the number of PR pages increases from

22 (Chapter 3, Chapter 5) to about 100. Therefore, assuming the monolithic compilation scales

linearly, we will already achieve 4–5 times more parallelism in the degree of separate compilation,

leading to a better compilation speedup. If the monolithic compilation suffers from poor scalability,

the compilation speedup will only increase.

However, for a larger FPGA device, compiling for the same, single-sized PR page should take longer

even on the same workstation because loading device information and reading design checkpoints

take longer for larger devices. Thus, we do not expect to have 2–3 minutes of incremental compilation

as we have seen in Chapter 3 and Chapter 5 but expect to have a longer incremental compilation.

When compiling for a page, the entire device does not need to be loaded into the memory but the

related segment of the device can be loaded. Nevertheless, today’s vendor tool still loads the entire

device information, potentially limiting the benefit of our separate compilation approach based on

PR since we need to load the static design and link the netlist on the PR region. The overhead of

loading a large device information or a design checkpoint in Vivado can be mitigated with the use

of the open-source FPGA toolchain [1, 84], as the feasibility of using such toolchain for separate

FPGA compilation is introduced in [99].
6The number can change depending on the FPGA family. For UltraScale+ FPGA, 7–8K is about the right number

with the reasons explained in Section 3.5.1. If the FPGA has more number of CLBs in one clock region height, the
number should increase.

118

Creating a static design with Hierarchical PR pages requires multiple sequential implementations.

Because each top-level implementation takes more time and the number of implementations grows

with more PR pages, the overall process should become more time-consuming. Nevertheless, this is

a one-time cost and can be hidden from application developers.

7.2. Application Decomposition

As mentioned in Section 3.4 and Section 3.5.3, because our NoC-based system assumes operators

connected with dataflow streams, we modify the provided code from Rosetta Benchmark Suite [109]

to create an array of operators that have inputs and outputs of HLS Stream (hls::stream). The

original applications in the Rosetta Benchmark Suite are not written in a dataflow graph, showing

that our framework can accommodate general HLS designs with some code refactoring. For applica-

tions like Rendering, Optical Flow [109] and CNN applications from FINN [92], the decomposition

is straightforward. For example, FINN generates HLS source code for a streaming architecture for

neural network, requiring minimal additional effort to use our framework. However, for some appli-

cations that share storage or consist of a single compute engine, application decomposition is not

intuitive. If the application developers explicitly design the applications in a way that the inputs

and outputs are in HLS Stream, mapping to our framework would not require any refactoring, and

developers can easily accelerate FPGA compilation with our framework.

In this dissertation, one operator is mapped on one PR region, and the granularity of the operators

is determined by the user. A separate HLS source code indicates one operator, and our framework

maps the top function in the source code to the appropriate PR page based on the post-synthesis

resource utilization and the application graph. The approach that allocates one operator per PR

region could potentially result in internal fragmentation when the sizes of operators are small. For

instance, if an application has 100 operators whose sizes are 100 LUTs, the application cannot be

mapped on the target device with our framework although the entire application is even smaller

than one double-sized page. Each operator will be mapped on a single page that has 7K LUTs, and

6,900 LUTs are left not used. In the case of many small operators, we can improve our framework

by merging multiple operators and map on a single page. The same bottleneck identification based

119

on FIFO counters can be used. The current framework in [77] has FIFO counters per a PR page.

However, in the case when multiple operators are mapped on one page, we can instantiate similar

FIFO counters for all the operators and retrieve them back to the host to profile in the software.

7.3. Hard NoC

While the majority of FPGA devices in today’s market do not have an embedded NoC, Versal

from AMD [35] and Speedster7t from Achronix [3] have a hard NoC along with the programmable

logic. Recent academic literatures [19, 18] also explore novel reconfigurable accelerators with a hard

NoC. A hard NoC can support high-bandwidth data movement between memory and programmable

fabric so that compute kernels can focus on computation instead of communication. A hard NoC

also promotes a modular design methodology that aligns with our divide-and-conquer philosophy.

Our fast separate compilation framework should be portable with any FPGA devices that have or

do not have a hard NoC because we are using a soft NoC. Nevertheless, it is natural to expand

our idea to modern FPGAs with a hard NoC since hard NoCs provide higher bandwidth and do

not consume FPGA resources. SPADES [75], for example, creates 12 “sockets” on the endpoint of

the Versal NoC, an equivalent concept to our pages, and it uses RapidWright [63] for stitching and

replication as done in [91]. Although SPADES uses RapidWright in design manipulation, a hard

NoC and PR can create a natural synergy to enhance modularity in the design and to accelerate

FPGA compilation, just like we have shown in [79, 99, 78, 77] with a soft NoC and PR to support

arbitrary communication between operators and to avoid stitching. A downside of using a hard NoC

is that the degree of parallelism in separate compilation is limited by the number of the hard NoC’s

endpoints. For instance, a large FPGA device with a million LUTs can accommodate over 100 single-

sized pages with 8K LUTs with a soft NoC. Nevertheless, with a hard NoC, the number of pages

is bounded by the number of endpoints of the hard NoC, possibly resulting in lower compilation

speedup. An easy solution is to have a soft switch logic inside a hard NoC’s pages. In this hybrid

approach, we can first create large pages for all the endpoints. If there are 30 endpoints in the hard

NoC, the size of each page is about 33K LUTs in the device with a million LUTs. Then, as done in

our Hierarchical PR pages (Chapter 3), we can subdivide each page into multiple smaller pages to

provide both flexibility and finer-grained separate compilation.

120

In Chapter 5’s fast incremental refinement strategy, the reason why we migrate to the monolithic

system is to remove the area overhead and limited bandwidth of the soft NoC. With a hard NoC,

no migration is expected. No programmable resource is occupied by the NoC, and when even the

high bandwidth from a hard NoC is not sufficient, we can merge operators as done in Chapter 3

and Chapter 5.

7.4. Vivado PR

Modern PR technology from the vendor [14] has a few limitations to fully support our vision. We

use PR to separately compile each page, and we do not dynamically program a part of the device on

the fly. Thus, if PR’s dynamic nature is related to the issues that will be discussed in this section,

we need PR technology without its dynamic reconfiguration aspect.

7.4.1. Identical PR Regions

Both AMD PR and Altera PR allow static routing over the PR regions. As stated in Section 3.5.1

and Section 4.3, static routing over PR pages makes pages more heterogeneous by blocking logical

resources and stealing routing resources. In this work, we mitigate the static routing by using

CONTAIN_ROUTING true for the static pblock. By manually setting the Partition Pins to the same

relative locations for PR regions, it should be possible to create clean PR regions with no static

routing and identical IOs.

7.4.2. Partial Bitstream Relocation

While academic works [58, 82, 36, 72] support module relocation in the bitstream level, Vivado

PR does not officially support partial bitstream relocation. This means that even if we create the

same reconfigurable pblocks that have the same amount of static routing over, the same amount of

blocked resources, the same resource composition, and the same IOs, there is no vendor tool support

to replicate the partial bitstream from one PR region to another PR region. First, this limitation

prevents us from taking full advantage of the software principle of reusing pre-compiled objects

with simple linking. Even when an operator’s source code remains unchanged, if the PR page for an

operator changes, the operator must be re-placed and re-routed for a new PR page. One scenario

is that if one operator gets to use a larger page, then the adjacent operator needs to be evicted to a

121

different PR page. Second, when testing a different page mapping, we want to quickly swap partial

bitstreams for different pages instead of recompiling operators for different pages every time, but

this is not possible at the moment. For a larger device with PR pages over 100, the impact of the

page assignment on the application performance increases, and relocating modules at the bitstream

level should be a useful feature. While it is theoretically possible to compile an operator for all 100

PR regions in the cloud (if there are 10 operators, this application requires 10×100 compilations in

the cloud), using relocatable partial bitstreams offers a much more elegant solution.

7.4.3. Stacking Multiple PR Regions within a Clock Region

The last issue with AMD Vivado’s PR technology [14] is that multiple reconfigurable pblocks cannot

be stacked within a single clock region as stated in Section 3.5.1. This limitation may be related to

AMD FPGA’s configuration frame and the dynamic nature of PR which programs one reconfigurable

partition while other parts of the design are operating. In our usage, we use PR just to separately

compile each operator, and this limitation may be unnecessary. Our goal is to create finer-grained

pages which lead to higher compilation speedup in our strategy. A design rule check option, which

we should turn on in dynamic PR but can turn off in the separate compilation like our usage, could

be useful. In Altera’s PR technology [5], multiple reconfigurable modules can exist in single clock

region, suggesting a potential for finer-grained PR pages (even smaller than 7–8K LUTs with a

reasonable aspect ratio).

7.5. FPGA Architecture

The obvious prerequisite for bitstream relocatability mentioned in the previous section is regular

resource distribution in the FPGA. Modern FPGA consists of multiple columns of different resource

types, but as mentioned in Section 3.5.1, the distribution is not regular. If bitstream relocation is

supported by the vendor tool, it is possible to relocate the bitstream to the same-sized PR page in the

same column. To relocate bitstreams horizontally as well, we need an FPGA with a grid of regular

regions. Authors in [91] also argue that irregularities in AMD’s UltraScale+ architecture lead to

resource wastage in their copy-and-paste approach to reduce FPGA compilation. Recently, FPGA

vendors promote a regular grid of programmable resources [42, 25, 35], opening up opportunities

122

for a divide-and-conquer strategy like ours. Creating a high-performance static design in a multi-

SLR device is challenging, and the difficulties related to the device architecture will be explained in

Section 7.6.1.

7.6. Divide-and-Conquer to Achieve a Better Maximum Frequency

7.6.1. High-performance Static Design in PR

Related works [41, 40, 75], which utilize RapidWright instead of PR, demonstrate a better maximum

operating frequency with a divide-and-conquer strategy. However, in this work, we mainly focus

on accelerating compilation time although a modular design methodology with a NoC is a widely

accepted design approach to achieve a better frequency in the routing-intensive design. AMD DFX

user guide [14] implies that PR can be used to close timing with a divide-and-conquer strategy,

but, to the best of our knowledge, whether the achieved frequency is better than the frequency

achieved by the monolithic implementation is not thoroughly addressed. Whether we use a soft

NoC [99, 98, 78, 77] or directly connect operators as done in [97, 100], the challenge with the divide-

and-conquer using Vivado PR technology lies in creating a high-performance static design in the

first place.

There are some engineering considerations when creating a high-performance static design in PR.

First, if we use large reconfigurable modules as placeholders, the overall design size increases, and it

is difficult to achieve high clock frequency for the static design. If we use almost empty placeholders

to create a static design, then a lot of static design routes over the PR regions, so we may need to

constrain the routing of the static design with CONTAIN_ROUTING property as done in Section 4.3.2.

The next aspect to consider is floorplanning. In AMD ZCU102 with ZU9EG FPGA used in Chap-

ter 3 and Chapter 5, the Processing System is located in the lower left, and when floorplanning PR

pages, it is essential to ensure that the NoC and other static elements can be placed adjacent to the

Processing System. The problem is exacerbated in AMD Alveo devices [6] that have multi-SLRs and

have limited Laguna channels between different SLRs. Alveo devices also have a PCIe on one side

and High Bandwidth Memory (HBM) on another side, imposing additional constraints for static

design placement and routing.

123

HBM

P
C

Ie

Soft NoC +

HBM Subsystem logic (32 channels) +

Laguna TX/RX register +

Vitis-generated interconnect

S
L
R

 0
S

L
R

 1
S

L
R

 2

Figure 7.1: A Conceptual View of High-performance Static Design in AMD U280 Device

124

The main problem with creating a high-performance static design is that the vendor tool may use

the same optimization objective in the placement stage when creating a static design or compiling

for an operator in a PR region. When compiling for an operator, the cells are generally placed

in a “round shape”. In contrast, when compiling for the static design, we want the design to be

spread out across the device, and by using a constraint like CONTAIN_ROUTING, we want the static

design to be placed and routed “densely”, leaving as much logic and routing resources as possible

for the PR Regions. Our works are compatible with Vitis Acceleration flow [12], and the auxiliary

Vitis-generated logic (27K LUTs in ZCU102 DFX Platform) in addition to the soft NoC makes it

more challenging to close timing for the static design. Figure 7.1 shows a conceptual view of high-

performance static design (colored orange) in AMD U280 device [6]. In this case, the static logic in

PR should consist of PCIe logic, a soft NoC, all 32 channels of HBM Subsystem, TX/RX registers

used in SLR crossing, and Vitis-generated interconnect logic. We want this logic to be densely

packed in a static pblock that has CONTAIN_ROUTING true. A systematic design methodology for

setting up this static logic that runs at high clock frequency would be a valuable study for the designs

that struggle to achieve a high operating clock frequency. For instance, [45] implements a Sparse

matrix–vector multiplication application (SpMV) on AMD U280 device, aiming to maximize HBM

bandwidth utilization. Despite using a modular and lean SpMV architecture, the authors achieve a

SpMV kernel frequency of 310MHz, which still falls short for 450MHz required to fully utilize the

HBM bandwidth available in the U280 device.7 In this case, the static logic that runs at 450MHz,

thereby fully utilizing HBM bandwidth, can decouple the implementation of communication and

computation. A single SpMV kernel can then be separately compiled within a PR region, running

at over 400MHz, as already demonstrated in [45].

To create a static design that is densely packed and capable of running at a high clock frequency,

we can constrain the pipeline registers as done in Section 4.4.1 or guide the placement of the

NoC and other elements with blocks. Because too much of floorplanning constraints often result
7A kernel frequency of 450MHz is required to fully utilize the HBM bandwidth in the U280, assuming a datawidth

of 256 bits. If the datawidth is increased to 512 bits, the required kernel frequency is halved to 225MHz at the cost
of using more FPGA resources for communication, yet making it a more relaxed target to achieve on an UltraScale+
device. For example, [90] achieves the full HBM bandwidth utilization with 512 bits × 225MHz in SpMV application.

125

in inferior clock frequency [8], we need to provide appropriate amount of constraints to Vivado.

For the same reason, automatic generation of the NoC-based overlay for different devices could be

nontrivial. While it is easy to automatically generate the overlay that runs at low clock frequencies

like 200MHz, when we run the NoC at 400MHz and feed different clock frequencies ranging up to

400MHz, the NoC overlay generation requires some careful engineering for UltraScale+ devices. In

summary, based on our experience, creating a high-performance static design requires meticulous

engineering and poses a significant challenge in achieving a high maximum frequency with the

commercial PR technology. Nevertheless, the systematic approach to generating a static design

presents a promising area for further research.

7.6.2. Continuity between the NoC-based System and the Monolithic System

If we have a highly optimized NoC-based system which can run at a higher clock frequency than

the monolithic design, then there is a discontinuity in our fast incremental refinement strategy

(Section 5.3). Similar issue is mentioned in Section 5.7.3 when having an implementation directive

per PR page in the NoC-based system could lead to a more performant design than having a single

implementation directive for the entire design in the monolithic system. An assumption in our

incremental strategy is that the NoC-based system explores design points that would have been

explored by the monolithic flow. If the NoC-based system ends in the design point that is unrelated

to monolithic flow, then we need to revisit our incremental refinement strategy.

7.7. Relationship with other Fast FPGA Compilation Studies

Our approach is different from the aforementioned approaches using pre-compiled macros to acceler-

ate FPGA compilation (Section 2.5) because ours is not limited by the pre-compiled IPs stocked in

the library. Arbitrary user designs can be compiled with our divide-and-conquer approach, and fast

compilation comes from the smaller problem size. This means that the divide-and-conquer philoso-

phy and other works that utilize pre-compiled macros can be integrated. For example, benchmarks

used in DynaRapid are less than 10K LUTs in size, and as the design size increases, the stitching

for the pre-routed circuits should become more challenging both in terms of runtime and quality.

To maintain a sub-minute of C-to-bitstream compilation, the usage of macros on top of modular

126

design methodology like ours could be a promising direction.

Similarly, fast FPGA placement and fast FPGA routing have been extensively studied [23, 88, 20,

10], and some approaches excel in a small problem but lack scalability. For these studies, explicitly

dividing a large compilation problem into multiple smaller subproblems offers a direction to sustain

competitive placement or routing time. The same idea is applied to the vendor tool’s placement

and routing engine. Vivado’s implementation algorithms are not exposed to the users, and whether

we compile for a small page or we compile for an entire chip, we may end up using a very similar

algorithm. It would be an interesting feature to have a Vivado’s implementation directive that

performs well only in a small design. If scalability was a problem for such an algorithm to be

adopted in the commercial tool, our separate compilation framework provides a good application

space for the algorithm to be useful.

7.8. Future Work

The vision for future work integrates all the components mentioned in this chapter. First, we

want to target a larger device with a hard NoC such as VCK190 board [11] featuring AMD Versal

XCVC1902 which has 899,840 LUTs. As outlined in Section 7.3, we can create Hierarchical PR

pages for each endpoint of the NoC. By adding soft switch logic to the endpoints of the hard NoC,

we can create a “hybrid NoC” with an increased number of finer-grained pages. Given the hard

NoC’s 28 endpoints, each page should have 32K = 899,840/28 LUTs, just about the same size as

the quad-sized PR page from Chapter 3 and Chapter 5. If we create two more hierarchies inside

the page, the smallest, single-sized page will have about 8K LUTs.

On the application side, we can explore a high-level domain-specific framework like FINN [92] for

a smooth integration with our philosophy. With minimal hardware expertise, the users should be

able to design an application composed of operators connected through dataflow streams. The

subsequent steps can be similar to our work. The framework can perform HLS and logic synthesis

in parallel for operators, and based on the post-synthesis resource utilization, an appropriate size

for the PR page is assigned. Then, each operator can generate its own partial bitstream.

127

As discussed in Section 7.2, we can group operators into clusters per PR page instead of a single

operator on each page. In this thesis, “operators” refer to logical computational blocks, but in the

future work, these could become more primitive and fine-grained. The challenge is that clusters

must be defined before the logic synthesis because the NoC interface is synthesized along with the

cluster. If the target applications are limited to a specific set of domain-specific applications, it may

be easier to develop models to predict the resource utilization as done in the FINN project. Using

these resource models, we can form clusters of operators, and each cluster, as an operator in this

thesis, can be compiled in parallel.

We can continue to use a similar bottleneck identification based on FIFO counters from Section 5.4.

Even with the clusters, we can keep the bottleneck identification at operator-level, with each operator

expected to be a finer-grained computing block.

The conceptual view is illustrated in Figure 7.2. The idea is elaborated by assuming that we

are using a hard NoC and PR, but the vision can be stretched using RapidWright if PR imposes

engineering challenges like the ones discussed in Section 7.1 and Section 7.6.1.

128

NoC port
Hard NoC

soft switches

Single-sized page (8K LUTs)

Hard NoC

FIFO counter logic

for profiling

Figure 7.2: Future Direction with a Hard NoC and Fine-grained Operators
Note: This is a conceptual view. Previously mentioned limitations in the PR

(e.g. PR regions can’t be stacked in a clock region) could limit the realization of the idea.

129

CHAPTER 8

CONCLUSIONS

Software programmers start from a design that is barely optimized and incrementally refine the

design. In software, the source codes for the initial design point are compiled in parallel and

linked together to generate an executable file. Then, programmers profile the design, identify

the bottleneck, and optimize the bottleneck function. When refined functions are integrated into

the design, only the changed functions can be recompiled and linked with the object files that

were already compiled. Therefore, even if the design size increases, the compilation time does not

increase unless the users recompile the system from scratch. In FPGA design optimization, such

incremental refinement is not realized. Inspired by the software development principle, in this thesis,

we support software-like FPGA development. The first problem we challenge is the long monolithic

FPGA compilation. To narrow the performance gap between FPGAs and ASICs, FPGA vendors

have traditionally focused on delivering high-quality solutions through their compilation process

rather than prioritizing compilation speed. As a result, vendor tools try to optimize an entire

design, even if it means a long compilation time. What is worse is that when there is a fix in

one component, the entire design needs to be recompiled, leading to another long compilation.

To resolve this issue, we support parallel compilation using pre-implemented NoC and PR pages.

Since the problem size is smaller, compilation is faster, explicitly utilizing more cores in today’s

multi-core workstations or compute servers. Because the compilation of each page is independent of

each other, our divide-and-conquer strategy also supports incremental compilation where only the

changed operator, not the entire design, can be recompiled.

A problem including our pioneering work and related work is that the size of pages is fixed. If the

size of the pages is small, it is the user’s responsibility to decompose a design into smaller operators.

Additional effort to decompose a design into regularly sized small operators is against our intent to

make software-like FPGA development where we want users to quickly test the design on FPGA just

like they start from barely functional design in software. Furthermore, applications with unnaturally

130

decomposed operators sometimes suffer from limited NoC bandwidth. On the other hand, if the size

of the pages is large, the degree of parallelism in a separate compilation strategy is limited. Utilizing

Hierarchical PR, we provide variable-sized PR pages. We support single-sized pages as done in the

previous separate compilation framework, but now, the single-sized pages can be recombined to offer

double-sized pages or quad-sized pages. This flexibility removes a burden for the users to have some

idea of how much resources the operators would consume. Also, applications do not suffer from

limited NoC bandwidth because of unnaturally decomposed operators since larger operators now

can be mapped in larger, recombined pages. When tested with a realistic Rosetta HLS benchmark

suite, variable-sized pages lead to up to 4.9× application latency improved compared to the fixed-

sized pages by mitigating the limited NoC bandwidth issue. Our new framework with variable-sized

pages still achieves 2.2–5.3× speedup in compilation time compared to the commercial tool.

Design optimization is an iterative process, and to utilize our framework’s incremental compilation,

we need a profiling capability to identify the bottleneck operator to refine. In contrast to software

development where users enjoy rich profiling tools to analyze their design, there is less visibility

on the inner state of the hardware design. Using FIFOs that are already embedded in dataflow

applications, we increment stall counters and full counters under different conditions. Based on

these FIFO counters, users or an automation script can identify the bottleneck operator. We

can also determine whether the limited NoC bandwidth in our separate compilation framework is

limiting the application performance. Altogether, we propose a fast incremental refinement strategy

for FPGA design. The idea is to start from our fast NoC-based system to iterate initial design points

as many as possible. Based on the FIFO counters extracted from the runtime execution on hardware,

our script chooses the next design point that can improve the application’s performance. When the

design needs more resources or the design-space is all explored in the NoC-based system, we migrate

to the monolithic system that directly connects operators without area and bandwidth overhead

from the NoC infrastructure. The fast incremental refinement strategy is evaluated with Rosetta

HLS benchmark suite and FINN framework, and our strategy reduces tuning time by 1.3–2.7×

compared to the flow that uses only a monolithic system to iterate every design point.

131

Our solution exploits FPGA’s reconfigurability, iteratively mapping different design points on hard-

ware. FPGA compilation does not have to be a button that can finally be pushed only when the

design is completely ready. Unlike ASICs, FPGA engineers can and should evaluate different design

points as quickly as possible. Additionally, our modular approach enables the use of placement and

routing algorithms that lack scalability because we compile only for pages, significantly smaller than

the size of the entire device.

Still, challenges remain. In this thesis, we use Vivado’s PR technology to accelerate Vivado’s

compilation time. However, using PR in non-traditional way has introduced challenges, including

the impact of static design’s size on compilation time, excessive static routing over PR regions,

limitations in the size of reconfigurable pblocks within a clock region, partial bitstream relocatability,

and difficulties in creating high-performance static logic. With the advent of new reconfigurable

SoC architecture already on the market, we believe our approach can generate a broader impact

with active vendor support for the toolchain or the adoption of an open-source toolchain.

132

APPENDIX A

FAST INCREMENTAL REFINEMENT DSE TRACES

Table A.1, Table A.2, Table A.3, Table A.4, Table A.5, Table A.6, and Table A.7 show the detailed

DSE traces for our fast incremental refinement strategy in Section 5.7.4.

Table A.1: Fast Incremental Refinement DSE Trace for Rendering

Iteration
Count

Compile
Time Bottleneck Design Point Metric Latency Best # parallel FlowLatency runs

1 240s None init - 2.21ms 2.21ms 5 NoC
2 245s rast2_i1 PAR_RAST = 2 lat. 1.56ms 1.56ms 4 NoC
3 275s zculling_i1 PAR_ZCUL = 2 lat. 1.27ms 1.27ms 8 NoC
4 269s rast2_i1 PAR_RAST = 4 lat. 1.13ms 1.13ms 9 NoC
5 319s zculling_i2 PAR_ZCUL = 4 lat. 0.81ms 0.81ms 13 NoC
6 208s rast2_i1 clk = 250MHz lat. 0.81ms 0.81ms 4 NoC
7 210s zculling_i3 clk = 250MHz lat. 0.71ms 0.71ms 4 NoC
8 222s zculling_i3 clk = 300MHz lat. - 0.71ms 4 NoC
9 229s zculling_i3 clk = 350MHz lat. 0.64ms 0.64ms 4 NoC
10 211s rast2_i1 clk = 300MHz lat. 0.59ms 0.59ms 4 NoC
11 213s rast2_i1 clk = 350MHz lat. 0.58ms 0.58ms 4 NoC
12 214s rast2_i1 clk = 400MHz lat. 0.57ms 0.57ms 4 NoC
13 232s zculling_i3 clk = 400MHz lat. - 0.57ms 4 NoC
14 795s Prev cofing.∗ Prev cofing.∗ lat. - 0.57ms 1 Mono
15 876s zculling_i3 clk = 400MHz lat. - 0.57ms 1 Mono

Prev cofing.∗: Because the previous config resulted in implementation failure, use the most recently successful design
point.

133

Table A.2: Fast Incremental Refinement DSE Trace for Digit Recognition

Iteration
Count

Compile
Time Bottleneck Design Point Metric Latency Best # parallel FlowLatency runs

1 298s None init - 19.16m 19.16ms∗ 10 NoC
2 333s None K_CONST = 2 acc. 19.45m 19.45ms∗ 10 NoC
3 321s None K_CONST = 3 acc. 37.58m 37.58ms∗ 10 NoC
4 313s None K_CONST = 4 acc. 55.74m 55.74ms 10 NoC
5 335s update_knn_i1 PAR_FACTOR = 20 lat. 28.69m 28.69ms 10 NoC
6 372s update_knn_i1 PAR_FACTOR = 30 lat. 19.87m 19.87ms 10 NoC
7 357s update_knn_i2 PAR_FACTOR = 40 lat. 15.44m 15.44ms 10 NoC
8 385s update_knn_i2 PAR_FACTOR = 50 lat. 12.81m 12.81ms 10 NoC
9 425s update_knn_i2 PAR_FACTOR = 60 lat. 11.09m 11.09ms 10 NoC
10 423s update_knn_i2 PAR_FACTOR = 80 lat. 8.98ms 8.98ms 10 NoC
11 398s update_knn_i2 PAR_FACTOR = 90 lat. 8.31ms 8.31ms 10 NoC
12 406s update_knn_i2 PAR_FACTOR = 100 lat. 7.79ms 7.79ms 10 NoC
13 409s update_knn_i2 PAR_FACTOR = 120 lat. 7.04ms 7.04ms 10 NoC
14 118s update_knn_i2 PAR_FACTOR = 150 lat. - 7.04ms 10 NoC
15 1224s Prev cofing.∗∗ Prev cofing.∗∗ lat. 6.35ms 6.35ms 1 Mono
16 1437s update_knn_i2 PAR_FACTOR = 180 lat. 5.99ms 5.99ms 1 Mono
17 1477s update_knn_i2 PAR_FACTOR = 200 lat. 5.84ms 5.84ms 1 Mono
18 627s update_knn_i2 PAR_FACTOR = 240 lat. - 5.84ms 1 Mono
19 1672s update_knn_i2 clk = 250MHz lat. 4.75ms 4.75ms 1 Mono
20 1671s update_knn_i2 clk = 300MHz lat. 5.12ms 4.75ms 1 Mono
21 1734s update_knn_i2 clk = 350MHz lat. 4.40ms 4.40ms 1 Mono
22 2234s update_knn_i2 clk = 400MHz lat. 4.76ms 4.40ms 1 Mono

∗: These designs have not achieved the target accuracy yet, so the best latency increases in the next design point.
Prev cofing.∗∗: The flow migrates to the monolithic system because of lack of resources. So, try PAR_FACTOR = 150 in the
monolithic system.

Table A.3: Fast Incremental Refinement DSE Trace for Optical Flow

Iteration
Count

Compile
Time Bottleneck Design Point Metric Latency Best # parallel FlowLatency runs

1 287s None init - 13.64ms 13.64ms∗ 7 NoC
2 294s None OUTER_WIDTH = 32 acc. 13.64ms 13.64ms∗ 4 NoC
3 335s None OUTER_WIDTH = 48 acc. 20.67ms 20.67ms 4 NoC
4 252s NoC bottleneck Merging operators lat. 20.25ms 20.25ms 1 NoC
5 378s NoC bottleneck Merging operators lat. 18.38ms 18.38ms 1 NoC
6 387s NoC bottleneck Merging operators lat. 13.64ms 13.64ms 1 NoC
7 377s flow_calc PAR_FACTOR = 2 lat. 6.95ms 6.95ms 1 NoC
8 426s flow_calc clk = 250MHz lat. 5.60ms 5.60ms 1 NoC
9 584s flow_calc clk = 300MHz lat. - 5.60ms 1 NoC
10 616s flow_calc clk = 350MHz lat. 4.02ms 4.02ms 1 NoC
11 607s flow_calc clk = 400MHz lat. - 4.02ms 1 NoC
12 777s Prev cofing.∗∗ Prev cofing.∗∗ lat. 4.01ms 4.01ms 1 Mono
13 759s flow_calc clk = 400MHz lat. 3.55ms 3.55ms 1 Mono

∗: These designs have not achieved the target accuracy yet, so the best latency increases in the next design point.
Prev cofing.∗∗: Because the previous config resulted in implementation failure, use the most recently successful design point.

134

Table A.4: Fast Incremental Refinement DSE Trace for Optical Flow‡

Iteration
Count

Compile
Time Bottleneck Design Point Metric Latency Best # parallel FlowLatency runs

1 282s None init - 13.66ms 13.66ms 7 NoC
2 299s t_w_y_i1 PAR_FACTOR = 2 lat. 6.92ms 6.92ms 9 NoC
3 168s t_w_y_i2 clk = 250MHz lat. 5.57ms 5.57ms 2 NoC
4 177s t_w_y_i2 clk = 300MHz lat. 5.47ms 5.47ms 2 NoC

5 219s NoC bottleneck flow_calc,
NoC interface = 2 lat. 4.74ms 4.74ms 1 NoC

6 177s NoC bottleneck outer_prod,
NoC interface = 2 lat. 4.71ms 4.71ms 1 NoC

7 160s t_w_y_i1 clk = 350MHz lat. 4.02ms 4.02ms 2 NoC
8 174s t_w_y_i1 clk = 400MHz lat. 3.84ms 3.84ms 2 NoC

9 247s NoC bottleneck g_xyz_calc, g_w_y,
NoC interface = 2 lat. 4.42ms 3.84ms 2 NoC

10 665s Prev cofing. Prev cofing. lat. 3.54ms 3.54ms 1 Mono

Optical Flow‡: Optical Flow with a lower accuracy target

Table A.5: Fast Incremental Refinement DSE Trace for CNN-1

Iteration
Count

Compile
Time Bottleneck Design Point Metric Latency Best # parallel FlowLatency runs

1 444s None init - - - 15 NoC
2 216s None Larger PR page∗ - 33.64ms 33.64ms 13 NoC
3 259s layer_3_1 PE = 16 lat. 32.54ms 32.54ms 1 NoC
4 195s layer_0_0 clk = 250MHz lat. 30.67ms 30.67ms 1 NoC
5 176s layer_4_1 PE = 2 lat. 27.20ms 27.20ms 2 NoC
6 214s layer_last_1 PE = 2 lat. 26.79ms 26.79ms 2 NoC
7 168s layer_last_0 PE = 2 lat. 26.20ms 26.20ms 2 NoC
8 206s layer_0_1 clk = 250MHz lat. 26.05ms 26.05ms 1 NoC
9 214s layer_0_0 clk = 300MHz lat. 24.25ms 24.25ms 1 NoC
10 258s layer_3_0 SIMD = 16 lat. 23.15ms 23.15ms 2 NoC
11 178s layer_1_0 clk = 250MHz lat. 22.84ms 22.84ms 1 NoC
12 308s layer_1_1 clk = 250MHz lat. 21.73ms 21.73ms 1 NoC
13 212s layer_0_0 clk = 350MHz lat. 21.14ms 21.14ms 1 NoC
14 207s layer_0_1 clk = 300MHz lat. 21.14ms 21.14ms 1 NoC
15 189s layer_4_0 SIMD = 2 lat. 18.72ms 18.72ms 2 NoC
16 240s layer_2_1 PE = 16 lat. 18.59ms 18.59ms 2 NoC
17 197s layer_0_0 clk = 400MHz lat. 18.57ms 18.57ms 1 NoC
18 180s layer_1_0 clk = 300MHz lat. 18.33ms 18.33ms 1 NoC
19 309s layer_1_1 clk = 300MHz lat. 17.54ms 17.54ms 1 NoC
20 216s layer_0_1 clk = 350MHz lat. 17.40ms 17.40ms 1 NoC
21 248s layer_2_0 SIMD = 16 lat. 16.63ms 16.63ms 2 NoC
22 722s Prev config. Prev config. lat. 16.63ms 16.63ms 1 Mono

∗: One or more operator fails in implementation. Assign larger PR pages for failed operators.

135

Table A.6: Fast Incremental Refinement DSE Trace for CNN-2

Iteration
Count

Compile
Time Bottleneck Design Point Metric Latency Best # parallel FlowLatency runs

1 718s None init - - - 15 NoC
2 218s None Larger PR page∗ - 33.64ms 33.64ms 12 NoC
3 395s layer_3_1 PE = 16 lat. 32.53ms 32.53ms 1 NoC
4 191s layer_0_0 clk = 250MHz lat. 30.67ms 30.67ms 1 NoC
5 201s layer_4_1 PE = 2 lat. 27.19ms 27.19ms 2 NoC
6 234s layer_last_1 PE = 2 lat. 26.83ms 26.83ms 2 NoC
7 194s layer_last_0 PE = 2 lat. 26.20ms 26.20ms 2 NoC
8 226s layer_0_1 clk = 250MHz lat. 26.07ms 26.07ms 1 NoC
9 208s layer_0_0 clk = 300MHz lat. 24.25ms 24.25ms 1 NoC
10 393s layer_3_0 SIMD = 16 lat. 23.15ms 23.15ms 2 NoC
11 162s layer_1_0 clk = 250MHz lat. 22.95ms 22.95ms 1 NoC
12 577s NoC bottleneck Merging operators lat. 21.73ms 21.73ms 1 NoC
13 198s layer_0_0 clk = 350MHz lat. 21.12ms 21.12ms 1 NoC
14 239s layer_0_1 clk = 300MHz lat. 21.11ms 21.11ms 1 NoC
15 208s layer_4_0 SIMD = 2 lat. 18.72ms 18.72ms 2 NoC
16 563s layer_2_1 PE = 16 lat. 18.58ms 18.58ms 2 NoC
17 207s layer_0_0 clk = 400MHz lat. 18.55ms 18.55ms 1 NoC
18 574s layer_1_1 clk = 300MHz lat. 17.54ms 17.54ms 1 NoC
19 236s layer_0_1 clk = 350MHz lat. 17.40ms 17.40ms 1 NoC
20 706s layer_2_0 SIMD = 16 lat. 16.66ms 16.66ms 13 NoC
21 921s Prev config. Prev config. lat. 16.62ms 16.62ms 1 Mono

∗: One or more operator fails in implementation. Assign larger PR pages for failed operators.

Table A.7: Fast Incremental Refinement DSE Trace for CNN-3

Iteration
Count

Compile
Time Bottleneck Design Point Metric Latency Best # parallel FlowLatency runs

1 851s None init - 33.66ms 33.66ms 15 NoC
2 582s layer_3_1 PE = 16 lat. 32.53ms 32.53ms 14 NoC
3 210s layer_0_0 clk = 250MHz lat. 30.67ms 30.67ms 1 NoC
4 184s layer_4_1 PE = 2 lat. 27.20ms 27.20ms 2 NoC
5 212s layer_last_1 PE = 2 lat. 26.80ms 26.80ms 2 NoC
6 171s layer_last_0 PE = 2 lat. 26.19ms 26.19ms 2 NoC
7 217s layer_0_1 clk = 250MHz lat. 26.04ms 26.04ms 1 NoC
8 228s layer_0_0 clk = 300MHz lat. 24.25ms 24.25ms 1 NoC
9 452s layer_3_0 SIMD = 16 lat. 23.15ms 23.15ms 2 NoC
10 161s layer_1_0 clk = 250MHz lat. 22.93ms 22.93ms 1 NoC
11 773s NoC bottleneck Merging operators lat. 21.74ms 21.74ms 1 NoC
12 215s layer_0_0 clk = 350MHz lat. 21.11ms 21.11ms 1 NoC
13 247s layer_0_1 clk = 300MHz lat. 21.11ms 21.11ms 1 NoC
14 208s layer_4_0 SIMD = 2 lat. 18.71ms 18.71ms 2 NoC
15 609s layer_2_1 PE = 16 lat. 18.58ms 18.58ms 14 NoC
16 210s layer_0_0 clk = 400MHz lat. 18.55ms 18.55ms 1 NoC
17 831s layer_1_1 clk = 300MHz lat. 17.54ms 17.54ms 1 NoC
18 238s layer_0_1 clk = 350MHz lat. 17.40ms 17.40ms 1 NoC
19 443s layer_2_0 PE = 16 lat. 16.66ms 16.66ms 2 NoC
20 1091s Prev config. Prev config. lat. 16.63ms 16.63ms 1 Mono

136

BIBLIOGRAPHY

[1] F4pga documentation. https://f4pga.readthedocs.io/en/latest/, 2024. [Online; accessed 6-
December-2024].

[2] M. Abbas and V. Betz. Latency insensitive design styles for fpgas. In Proceedings of the
International Conference on Field-Programmable Logic and Applications, 2018.

[3] Achronix Semiconductor Corporation. Speedster7t Network on Chip User Guide (UG089),
2019.

[4] S. A. Alam, D. Gregg, G. Gambardella, T. Preusser, and M. Blott. On the rtl implementation
of finn matrix vector unit. ACM Transactions on Embedded Computing Systems., 2022.

[5] Altera. Quartus Prime Pro Edition User Guide Partial Reconfiguration, April 2024.

[6] AMD. UG1120: Alveo Data Center Accelerator Card Platforms, October 2023.

[7] AMD. UG904: Vivado Design Suite User Guide: Implementation, May 2023.

[8] AMD. UG906: Vivado Design Suite User Guide: Design Analysis and Closure Techniques,
May 2023.

[9] AMD. UG974: UltraScale Architecture Libraries Guide, October 2023.

[10] AMD. Runtime-first fpga interchange routing contest @ fpga’24. https://xilinx.github.io/
fpga24_routing_contest/index.html, 2024. [Online; accessed 8-December-2024].

[11] AMD. UG1366: VCK190 Evaluation Board, September 2024.

[12] AMD. UG1393: Vitis Unified Software Platform Documentation: Application Acceleration
Development, July 2024.

[13] AMD. UG1399: Vitis High-Level Synthesis User Guide, July 2024.

[14] AMD. UG909: Vivado Design Suite User Guide: Dynamic Function eXchange, June 2024.

[15] C. Beckhoff, D. Koch, and J. Torresen. Go Ahead: A partial reconfiguration framework. In
Proceedings of the IEEE Symposium on Field-Programmable Custom Computing Machines,
pages 37–44, April 2012.

[16] M. Blott, T. B. Preußer, N. J. Fraser, G. Gambardella, K. O’brien, Y. Umuroglu, M. Leeser,
and K. Vissers. FINN-R: An end-to-end deep-learning framework for fast exploration of
quantized neural networks. ACM Transactions on Reconfigurable Technology and Systems,
11(3), 2018.

137

https://f4pga.readthedocs.io/en/latest/
https://xilinx.github.io/fpga24_routing_contest/index.html
https://xilinx.github.io/fpga24_routing_contest/index.html

[17] A. Boutros and V. Betz. Fpga architecture: Principles and progression. IEEE Circuits and
Systems Magazine, 21(2):4–29, 2021.

[18] A. Boutros, E. Nurvitadhi, and V. Betz. Architecture and application co-design for beyond-
fpga reconfigurable acceleration devices. IEEE Access, 10:95067–95082, 2022.

[19] A. Boutros, E. Nurvitadhi, and V. Betz. Rad-sim: Rapid architecture exploration for novel
reconfigurable acceleration devices. In Proceedings of the International Conference on Field-
Programmable Logic and Applications, pages 438–444, 2022.

[20] I. Bustany, G. Gasparyan, A. Gupta, A. B. Kahng, M. Kalase, W. Li, and B. Pramanik. The
2023 mlcad fpga macro placement benchmark design suite and contest results. In ACM/IEEE
Workshop on Machine Learning for CAD (MLCAD), pages 1–6, 2023.

[21] L. Carloni, K. McMillan, and A. Sangiovanni-Vincentelli. Theory of latency-insensitive design.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 20(9):1059–
1076, 2001.

[22] E. Caspi, M. Chu, R. Huang, N. Weaver, J. Yeh, J. Wawrzynek, and A. DeHon. Stream com-
putations organized for reconfigurable execution (SCORE): Extended abstract. In Proceedings
of the International Conference on Field-Programmable Logic and Applications, LNCS, pages
605–614. Springer-Verlag, August 28–30 2000.

[23] D. Chen, J. Cong, and P. Pan. Fpga design automation: A survey. Foundations and Trends®
in Electronic Design Automation, 1(3):195–330, 2006.

[24] Y.-k. Choi, P. Zhang, P. Li, and J. Cong. Hlscope+: Fast and accurate performance estimation
for fpga hls. In Proceedings of the International Conference on Computer-Aided Design, page
691–698. IEEE Press, 2017.

[25] J. Chromczak, M. Wheeler, C. Chiasson, D. How, M. Langhammer, T. Vanderhoek, G. Zgheib,
and I. Ganusov. Architectural enhancements in intel® agilex™ fpgas. In Proceedings of the
International Symposium on Field-Programmable Gate Arrays, 2020.

[26] J. Coole and G. Stitt. Bpr: fast fpga placement and routing using macroblocks. In
IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Syn-
thesis, CODES+ISSS ’12, page 275–284, New York, NY, USA, 2012. Association for Comput-
ing Machinery.

[27] S. Dai, Y. Zhou, H. Zhang, E. Ustun, E. F. Young, and Z. Zhang. Fast and accurate estimation
of quality of results in high-level synthesis with machine learning. In Proceedings of the IEEE
Symposium on Field-Programmable Custom Computing Machines, pages 129–132, 2018.

[28] A. DeHon. Balancing interconnect and computation in a reconfigurable computing array (or,
why you don’t really want 100% lut utilization). In Proceedings of the International Symposium
on Field-Programmable Gate Arrays, pages 69–78, February 1999.

138

[29] A. DeHon. Compact, multilayer layout for butterfly fat-tree. In ACM Symposium on Parallel
Algorithms and Architectures, pages 206–215. ACM, July 2000.

[30] A. DeHon. Rent’s rule based switching requirements. In Proceedings of the System-Level
Interconnect Prediction Workshop, pages 197–204. ACM, March 2001.

[31] A. DeHon. Unifying mesh- and tree-based programmable interconnect. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, 12(10):1051–1065, October 2004.

[32] A. DeHon. Fundamental underpinnings of reconfigurable computing architectures. Proceedings
of the IEEE, 103(3):355–378, March 2015.

[33] A. DeHon, Y. Markovsky, E. Caspi, M. Chu, R. Huang, S. Perissakis, L. Pozzi, J. Yeh,
and J. Wawrzynek. Stream computations organized for reconfigurable execution. Journal of
Microprocessors and Microsystems, 30(6):334–354, September 2006.

[34] L. Du, T. Liang, S. Sinha, Z. Xie, and W. Zhang. FADO: Floorplan-aware directive optimiza-
tion for high-level synthesis designs on multi-die fpgas. In Proceedings of the International
Symposium on Field-Programmable Gate Arrays, 2023.

[35] B. Gaide, D. Gaitonde, C. Ravishankar, and T. Bauer. Xilinx adaptive compute accelera-
tion platform: Versal architecture. In Proceedings of the International Symposium on Field-
Programmable Gate Arrays, 2019.

[36] B. Gottschall, T. Preußer, and A. Kumar. Reloc — an open-source vivado workflow for
generating relocatable end-user configuration tiles. In Proceedings of the IEEE Symposium on
Field-Programmable Custom Computing Machines, pages 211–211, 2018.

[37] S. L. Graham, P. B. Kessler, and M. K. McKusick. gprof: a call graph execution profiler. In
Proceedings of the SIGPLAN ’82 Symposium on Compiler Construction, pages 120–126. ACM
SIGPLAN, ACM, June 1982. SIGPLAN Notices, Volume 17, Number 6.

[38] A. Guerrieri, S. Guha, C. Lavin, E. Hung, L. Josipović, and P. Ienne. Dynarapid: Fast-
tracking from c to routed circuits. In Proceedings of the International Conference on Field-
Programmable Logic and Applications, pages 24–32, 2024.

[39] L. Guo, Y. Chi, J. Wang, J. Lau, W. Qiao, E. Ustun, Z. Zhang, and J. Cong. AutoBridge:
Coupling coarse-grained floorplanning and pipelining for high-frequency HLS design on multi-
die FPGAs. In Proceedings of the International Symposium on Field-Programmable Gate
Arrays, pages 81—-92, New York, NY, USA, 2021. ACM.

[40] L. Guo, P. Maidee, Y. Zhou, C. Lavin, E. Hung, W. Li, J. Lau, W. Qiao, Y. Chi, L. Song,
Y. Xiao, A. Kaviani, Z. Zhang, and J. Cong. Rapidstream 2.0: Automated parallel implemen-
tation of latency–insensitive fpga designs through partial reconfiguration. ACM Transactions
on Reconfigurable Technology and Systems, 16(4), 2023.

[41] L. Guo, P. Maidee, Y. Zhou, C. Lavin, J. Wang, Y. Chi, W. Qiao, A. Kaviani, Z. Zhang,
and J. Cong. Rapidstream: Parallel physical implementation of FPGA HLS designs. In

139

Proceedings of the International Symposium on Field-Programmable Gate Arrays, pages 1–12,
2022.

[42] D. L. How and S. Atsatt. Sectors: Divide conquer and softwarization in the design and valida-
tion of the Stratix 10 FPGA. In Proceedings of the IEEE Symposium on Field-Programmable
Custom Computing Machines, pages 119–126, May 2016.

[43] Y. Huan and A. DeHon. FPGA optimized packet-switched NoC using split and merge prim-
itives. In Proceedings of the International Conference on Field-Programmable Technology,
pages 47–52. IEEE, December 2012.

[44] Intel. Intel Agilex® 7 M-Series FPGA Network-on-Chip (NoC) User Guide, July 2023.

[45] A. K. Jain, C. Ravishankar, H. Omidian, S. Kumar, M. Kulkarni, A. Tripathi, and
D. Gaitonde. Modular and lean architecture with elasticity for sparse matrix vector mul-
tiplication on fpgas. In Proceedings of the IEEE Symposium on Field-Programmable Custom
Computing Machines, pages 133–143, 2023.

[46] L. Josipović, A. Guerrieri, and P. Ienne. Invited tutorial: Dynamatic: From c/c++ to dynami-
cally scheduled circuits. In Proceedings of the International Symposium on Field-Programmable
Gate Arrays, FPGA ’20, page 1–10, New York, NY, USA, 2020. Association for Computing
Machinery.

[47] G. Kahn. The semantics of a simple language for parallel programming. In Proceedings of the
IFIP CONGRESS 74, pages 471–475. North-Holland Publishing Company, 1974.

[48] N. Kapre. Deflection-routed butterfly fat trees on FPGAs. In Proceedings of the International
Conference on Field-Programmable Logic and Applications, pages 1–8, Sept 2017.

[49] N. Kapre and A. DeHon. An NoC traffic compiler for efficient FPGA implementation of par-
allel graph applications. In Proceedings of the Reconfigurable Communication-Centric Systems
on Chip, pages 87–94, May 2010.

[50] N. Kapre and J. Gray. Hoplite: Building austere overlay NoCs for FPGAs. In Proceedings of
the International Conference on Field-Programmable Logic and Applications, pages 1–8, 2015.

[51] N. Kapre and J. Gray. Hoplite: A deflection-routed directional torus NoC for FPGAs. ACM
Transactions on Reconfigurable Technology and Systems, 10(2):14:1–14:24, Mar. 2017.

[52] N. Kapre, N. Mehta, M. deLorimier, R. Rubin, H. Barnor, M. J. Wilson, M. Wrighton, and
A. DeHon. Packet-switched vs. time-multiplexed FPGA overlay networks. In Proceedings of
the IEEE Symposium on Field-Programmable Custom Computing Machines, pages 205–213.
IEEE, 2006.

[53] N. Kapre, H. Ng, K. Teo, and J. Naude. Intime: A machine learning approach for efficient
selection of fpga cad tool parameters. In Proceedings of the International Symposium on Field-
Programmable Gate Arrays, FPGA ’15, page 23–26, New York, NY, USA, 2015. Association
for Computing Machinery.

140

[54] G. Karypis and V. Kumar. MeTis: Unstructured Graph Partitioning and Sparse Matrix
Ordering System, Version 4.0. http://www.cs.umn.edu/~metis, 2009.

[55] D. Koch and C. Beckhoff. Hierarchical reconfiguration of fpgas. In Proceedings of the Inter-
national Conference on Field-Programmable Logic and Applications, pages 1–8, 2014.

[56] D. Koch, C. Beckhoff, and J. Teich. Recobus-builder — a novel tool and technique to build
statically and dynamically reconfigurable systems for fpgas. In 2008 International Conference
on Field Programmable Logic and Applications, pages 119–124, 2008.

[57] I. Kuon, R. Tessier, and J. Rose. FPGA Architecture: Survey and Challenges. Now Founda-
tions and Trends, 2008.

[58] A. Lalevée, P.-H. Horrein, M. Arzel, M. Hübner, and S. Vaton. Autoreloc: Automated design
flow for bitstream relocation on xilinx fpgas. In 2016 Euromicro Conference on Digital System
Design (DSD), pages 14–21, 2016.

[59] B. S. Landman and R. L. Russo. On pin versus block relationship for partitions of logic
circuits. IEEE Transactions on Computers, 20, 1971.

[60] I. Lang, Z. Huang, and N. Kapre. Exploring the impact of switch arity on butterfly fat
tree FPGA nocs. In Proceedings of the IEEE Symposium on Field-Programmable Custom
Computing Machines, 2020.

[61] M. Langhammer, G. Baeckler, and S. Gribok. Spiderweb - high performance fpga noc. In
IEEE International Parallel and Distributed Processing Symposium Workshops, pages 115–
118, 2020.

[62] C. Lavin and E. Hung. Invited paper: Rapidwright: Unleashing the full power of fpga technol-
ogy with domain-specific tooling. In Proceedings of the International Conference on Computer-
Aided Design, pages 1–7, 2023.

[63] C. Lavin and A. Kaviani. RapidWright: Enabling custom crafted implementations for FPGAs.
In Proceedings of the IEEE Symposium on Field-Programmable Custom Computing Machines,
pages 133–140, 2018.

[64] C. Lavin, M. Padilla, J. Lamprecht, P. Lundrigan, B. Nelson, and B. Hutchings. HMFlow:
Accelerating FPGA compilation with hard macros for rapid prototyping. In Proceedings of
the IEEE Symposium on Field-Programmable Custom Computing Machines, pages 117–124,
2011.

[65] C. Lavin, M. Padilla, J. Lamprecht, P. Lundrigan, B. Nelson, and B. Hutchings. RapidSmith:
Do-it-yourself CAD tools for xilinx FPGAs. In Proceedings of the International Conference
on Field-Programmable Logic and Applications, September 2011.

[66] C. E. Leiserson. VLSI theory and parallel supercomputing. MIT/LCS/TM 402, MIT, 545
Technology Sq., Cambridge, MA 02139, May 1989.

141

http://www.cs.umn.edu/~metis

[67] J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network dataset collection. http:
//snap.stanford.edu/data, 2014.

[68] C. Lo and P. Chow. Multi-fidelity optimization for high-level synthesis directives. In Proceed-
ings of the International Conference on Field-Programmable Logic and Applications, pages
272–279, 2018.

[69] C. Lo and P. Chow. Hierarchical modelling of generators in design-space exploration. In
Proceedings of the IEEE Symposium on Field-Programmable Custom Computing Machines,
pages 186–194, 2020.

[70] S. Ma, Z. Aklah, and D. Andrews. Just in time assembly of accelerators. In Proceedings of
the International Symposium on Field-Programmable Gate Arrays, pages 173–178, 2016.

[71] G. S. Malik and N. Kapre. Enhancing butterfly fat tree NoCs for FPGAs with lightweight flow
control. In Proceedings of the IEEE Symposium on Field-Programmable Custom Computing
Machines, 2019.

[72] K. Manev, J. Powell, K. Matas, and D. Koch. byteman: A bitstream manipulation framework.
In Proceedings of the International Conference on Field-Programmable Technology, pages 1–9,
2022.

[73] L. McMurchie and C. Ebeling. Pathfinder: A negotiation-based performance-driven router for
fpgas. In Proceedings of the International Symposium on Field-Programmable Gate Arrays,
pages 111–117, 1995.

[74] K. E. Murray, O. Petelin, S. Zhong, J. M. Wang, M. Eldafrawy, J.-P. Legault, E. Sha, A. G.
Graham, J. Wu, M. J. P. Walker, H. Zeng, P. Patros, J. Luu, K. B. Kent, and V. Betz. Vtr
8: High-performance cad and customizable fpga architecture modelling. ACM Transactions
on Reconfigurable Technology and Systems, 13(2), June 2020.

[75] T. Nguyen, Z. Blair, S. Neuendorffer, and J. Wawrzynek. Spades: A productive design
flow for versal programmable logic. In Proceedings of the International Conference on Field-
Programmable Logic and Applications, 2023.

[76] M. K. Papamichael and J. C. Hoe. CONNECT: Re-examining conventional wisdom for de-
signing NoCs in the context of FPGAs. In Proceedings of the International Symposium on
Field-Programmable Gate Arrays, pages 37–46, 2012.

[77] D. Park and A. DeHon. REFINE: Runtime Execution Feedback for INcremental Evolution on
FPGA designs. In Proceedings of the International Symposium on Field-Programmable Gate
Arrays, 2024.

[78] D. Park, Y. Xiao, and A. DeHon. Fast and flexible FPGA development using hierarchical
partial reconfiguration. In Proceedings of the International Conference on Field-Programmable
Technology, 2022.

142

http://snap.stanford.edu/data
http://snap.stanford.edu/data

[79] D. Park, Y. Xiao, N. Magnezi, and A. DeHon. Case for fast FPGA compilation using partial
reconfiguration. In Proceedings of the International Conference on Field-Programmable Logic
and Applications, 2018.

[80] D. Park, Z. Yao, Y. Xiao, and A. DeHon. Asymmetry in butterfly fat tree FPGA noc. In
Proceedings of the International Conference on Field-Programmable Technology, 2023.

[81] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[82] K. D. Pham, E. Horta, and D. Koch. BITMAN: A tool and api for FPGA bitstream manipu-
lations. In Proceedings of the Conference and Exhibition on Design, Automation and Test in
Europe, 2017.

[83] B. C. Schafer and Z. Wang. High-level synthesis design space exploration: Past, present, and
future. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
39(10):2628–2639, 2020.

[84] D. Shah, E. Hung, C. Wolf, S. Bazanski, D. Gisselquist, and M. Milanovic. Yosys+nextpnr:
An open source framework from verilog to bitstream for commercial fpgas. In Proceedings of
the IEEE Symposium on Field-Programmable Custom Computing Machines, pages 1–4, 2019.

[85] L. Shannon and P. Chow. Maximizing system performance: using reconfigurability to
monitor system communications. In Proceedings of the International Conference on Field-
Programmable Technology, 2004.

[86] A. A. Sohanghpurwala, P. Athanas, T. Frangieh, and A. Wood. OpenPR: An open-source
partial-reconfiguration toolkit for Xilinx FPGAs. In IEEE International Symposium on Par-
allel and Distributed Processing Workshops and Phd Forum, pages 228–235, May 2011.

[87] A. Sohrabizadeh, C. H. Yu, M. Gao, and J. Cong. Autodse: Enabling software programmers
to design efficient fpga accelerators. ACM Transactions on Reconfigurable Technology and
Systems, 2022.

[88] M. Stojilović. Parallel fpga routing: Survey and challenges. In Proceedings of the International
Conference on Field-Programmable Logic and Applications, pages 1–8, 2017.

[89] I. Swarbrick, D. Gaitonde, S. Ahmad, B. Gaide, and Y. Arbel. Network-on-chip programmable
platform in versaltm acap architecture. In Proceedings of the International Symposium on
Field-Programmable Gate Arrays, 2019.

[90] A. R. Tareen, M. Meyer, C. Plessl, and T. Kenter. Hihispmv: Sparse matrix vector multipli-
cation with hierarchical row reductions on fpgas with high bandwidth memory. In Proceedings
of the IEEE Symposium on Field-Programmable Custom Computing Machines, pages 32–42,
2024.

143

[91] J. Thomas, C. Lavin, and A. Kaviani. Software-like compilation for data center FPGA accel-
erators. In Proceedings of the International Symposium on Highly Efficient Accelerators and
Reconfigurable Technologies, June 2021.

[92] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong, M. Jahre, and K. Vissers.
FINN: A framework for fast, scalable binarized neural network inference. In Proceedings of
the International Symposium on Field-Programmable Gate Arrays, 2017.

[93] E. Ustun, S. Xiang, J. Gui, C. Yu, and Z. Zhang. Lamda: Learning-assisted multi-stage auto-
tuning for fpga design closure. In Proceedings of the IEEE Symposium on Field-Programmable
Custom Computing Machines, pages 74–77, 2019.

[94] K. Vipin and S. A. Fahmy. FPGA dynamic and partial reconfiguration: A survey of architec-
tures, methods, and applications. ACM Computing Surveys, 51(4):72.1–72.39, 2018.

[95] Y. Xiao. Accelerating FPGA Developments from C to Bitstreams by Partial Reconfiguration.
PhD thesis, University of Pennsylvania, 2023.

[96] Y. Xiao, S. Ahmed, and A. DeHon. Fast linking of separately compiled FPGA blocks without
a NoC. In Proceedings of the International Conference on Field-Programmable Technology,
2020.

[97] Y. Xiao, A. Hota, D. Park, and A. DeHon. HiPR: High-level partial reconfiguration for fast
incremental FPGA compilation. In Proceedings of the International Conference on Field-
Programmable Logic and Applications, 2022.

[98] Y. Xiao, E. Micallef, A. Butt, M. Hofmann, M. Alston, M. Goldsmith, A. Merczynski-Hait,
and A. DeHon. PLD: Fast FPGA compilation to make reconfigurable acceleration compat-
ible with modern incremental refinement software development. In Proceedings of the In-
ternational Conference on Architectural Support for Programming Languages and Operating
Systems, 2022.

[99] Y. Xiao, D. Park, A. Butt, H. Giesen, Z. Han, R. Ding, N. Magnezi, and A. DeHon. Reducing
FPGA compile time with separate compilation for FPGA building blocks. In Proceedings of
the International Conference on Field-Programmable Technology, 2019.

[100] Y. Xiao, D. Park, Z. J. Niu, A. Hota, and A. Dehon. Exhipr: Extended high-level partial
reconfiguration for fast incremental fpga compilation. ACM Transactions on Reconfigurable
Technology and Systems, 17(2), 2024.

[101] Xilinx. 66314 - vivado congestion. https://support.xilinx.com/s/article/66314?language=en_
US, 2020. [Online; accessed 2-December-2024].

[102] Xilinx. UG984: MicroBlaze Processor Reference Guide, October 2021.

[103] Xilinx. Vitis embedded platform source repository. https://github.com/Xilinx/Vitis_
Embedded_Platform_Source/tree/2021.1, 2021.

144

https://support.xilinx.com/s/article/66314?language=en_US
https://support.xilinx.com/s/article/66314?language=en_US
https://github.com/Xilinx/Vitis_Embedded_Platform_Source/tree/2021.1
https://github.com/Xilinx/Vitis_Embedded_Platform_Source/tree/2021.1

[104] Xilinx, Inc. UG946: Vivado Design Suite Tutorial: Hierarchical Design, April 2015.

[105] Xilinx, Inc. DS890: UltraScale Architecture and Product Data Sheet: Overview, May 2019.

[106] C. Xu, G. Liu, R. Zhao, S. Yang, G. Luo, and Z. Zhang. A parallel bandit-based approach
for autotuning fpga compilation. In Proceedings of the International Symposium on Field-
Programmable Gate Arrays, FPGA ’17, page 157–166, New York, NY, USA, 2017. Association
for Computing Machinery.

[107] S. Yazdanshenas and V. Betz. Interconnect solutions for virtualized field-programmable gate
arrays. IEEE Access, 2018.

[108] J. Zhao, T. Liang, S. Sinha, and W. Zhang. Machine learning based routing congestion
prediction in FPGA high-level synthesis. In Proceedings of the Conference and Exhibition on
Design, Automation and Test in Europe, pages 1130–1135, 2019.

[109] Y. Zhou, U. Gupta, S. Dai, R. Zhao, N. Srivastava, H. Jin, J. Featherston, Y.-H. Lai, G. Liu,
G. A. Velasquez, W. Wang, and Z. Zhang. Rosetta: A realistic high-level synthesis benchmark
suite for software programmable FPGAs. In Proceedings of the International Symposium on
Field-Programmable Gate Arrays, pages 269–278, 2018.

[110] Y. Zhou, P. Maidee, C. Lavin, A. Kaviani, and D. Stroobandt. Rwroute: An open-source
timing-driven router for commercial FPGAs. ACM Transactions on Reconfigurable Technology
and Systems, 15(1):1–27, 2021.

145

	ACKNOWLEDGEMENT
	ABSTRACT
	LIST OF TABLES
	LIST OF ILLUSTRATIONS
	INTRODUCTION
	BACKGROUND
	FAST AND FLEXIBLE FPGA DEVELOPMENT USING HIERARCHICAL PARTIAL RECONFIGURATION
	ENHANCEMENTS TO FAST COMPILATION FRAMEWORK
	INCREMENTAL REFINEMENT AND BOTTLENECK IDENTIFICATION
	ASYMMETRY IN BUTTERFLY-FAT-TREE NOC
	DISCUSSIONS
	CONCLUSIONS
	FAST INCREMENTAL REFINEMENT DSE TRACES
	BIBLIOGRAPHY

