Accelerating VGG16 DCNN with an FPGA

DONGJOON PARK, University of Pennsylvania, USA
PRANOTI DHAMAL, University of Pennsylvania, USA

While CPU and GPU bring about the high productivity and flexibility in designing Deep-Convolutional-
Neural-Network(DCNN), FPGA has recently gained popularity for efficiency in parallel tasks, like matrix
multiplication. In this work, we demonstrated the potential of HW acceleration in PyTorch’s convolution
function. Our VGG16, integrated with HW accelerated convolution function, results in xX14.8 speedup in
batch-1 case, and X11 speedup in batch-16 case over our SW baseline. The Figure of Merit(FOM) is 1372
seconds.

Additional Key Words and Phrases: neural networks, DNN, PyTorch, FPGA, OpenCL

ACM Reference Format:
Dongjoon Park and Pranoti Dhamal. 2021. Accelerating VGG16 DCNN with an FPGA. In . ACM, New York,
NY, USA, 7 pages. https://doi.org/XXXXXXX XXXXXXX

1 INTRODUCTION

PyTorch is one of the most popular machine learning frameworks for both researchers and hob-
byists. One interesting feature is that users can implement custom functions in C++ and import
C++ functions from Python domain[1]. This feature can lead to performance improvement when
executing parallel tasks that GPU or HW accelerator can excel.

FPGA has become a mainstream accelerator for DCNN inference for its performance and power
efficiency. However, at the same time, FPGA is notorious of its unfriendliness, and its long compila-
tion time and inherent complexities related to Hardware-Description-Languages(HDLs) often push
software engineers away from using it. To lower the entrance barrier of FPGA, both academia and
industry pour efforts in developing High-Level-Synthesis(HLS)[2]. HLS helps software program-
mers to easily generate RTL designs from C/C++ with appropriate pragmas. Furthermore, Xilinx
Vitis platform lets users to easily integrate host code and RTL kernel, which highly alleviates the
pain of SW/HW communication.

In this work, we demonstrate how users can utilize Xilinx FPGA from PyTorch to accelerate 2D
convolution. We create FPGA-accelerated VGG16 whose 2D convolution functions are implemented
in spatial systolic array on HW. The results show that FPGA-accelerated 2D convolution is an order
of magnitude faster than the naive SW implementation although it is far slower than PyTorch’s
vanilla 2D convolution function.

2 METHODOLOGY

We completed all the milestones specified in the project handout: 1)Hardware kernel completion
(without optimization, software emulation only), 2)Setup C++ extension with hardware kernel and
software emulation, 3)Run Python benchmarking script in software emulation, 4)Baseline design

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

ESE539 Final Project, Philadelphia, PA,

© 2021 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. .. $15.00

https://doi.org/XXXXXXX XXXXXXX

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

ESE539 Final Project, Philadelphia, PA,
Dongjoon Park and Pranoti Dhamal

(non-optimized version) verified in software and hardware, 5)Software optimizations, 6)Use all two
compute units and/or out of order command queue (non-exhaustive list).

We want to emphasize that we adhere to the rules; we must use 16 X 16 systolic array, and
we must choose data type between either float32 or float16. While increasing the size of the
systolic array or changing the data type will naturally result in the performance improvement, they
introduce an enormous extra design space.

If we are free to change the size of the systolic array, from the latency perspective, it is better to
increase the size as far as the resource usage for DSP is not over 1024, the only resource constraint
given. Additionally, we would like to have a rectangular systolic array instead of square shape in
order to minimize the number of kernel calls. The optimal shape of the systolic array is related to
the layer sizes of VGG16, and itself opens up a large design space exploration.

Quantization decreases latency accompanied with some accuracy loss. However, as long as
there is no strict accuracy criterion we need to achieve, one can try fixed point, 8bit, 4bit, or even
binarized neural network in the extreme case.

Therefore, we use 16 X 16 systolic array with float32 data type so that we can fully explore
data reuse, the use of multiple compute units, and overlapping communication and computation.
In Sec. 3.2, we will show that the neural network with our new convolution function results in the
exact same accuracy as PyTorch’s original VGG16.

2.1 System Overview

N filter * = output N
image in
2,
K“C N y
- ~
K2C HW
N J
Y
HW

Fig. 1. Transform 2D convolution into Matrix Multiplication; C: input ch, N: output ch, K: filter width, height,
H: output height, W: output width

As can be seen in Fig. 1, we can transform 2D convolution to 2D matrix multiplication. Input
image needs to be reformatted with im2col function, and the matrix output also needs to be
reformatted with col2im function in order to function identical to 2D convolution[4]. The key idea
is that we want to accelerate 2D convolution by mapping matrix multiplication on HW, which is a
natural fit for a spatial computation.

The system diagram is shown in Fig. 2. The left side of the diagram is the host that runs on
x86, and the right side of the diagram is Virtex UltraScale+ FPGA in AWS F1 instance. We create
fpga_conv2d that inherits PyTorch’s ConvNd to create our own 2D convolution. We decide to
perform im2col and col2imin SW and do matrix multiplication in HW using 16 X 16 systolic array.
This design choice will be backed up by runtime breakdown data in Sec. 3.1.

An important design choice is that we keep the heights and widths of the matrices in Fig. 1 as
the multiples of 16. This is done in SW by stretching the array size to the least multiple of 16 that is
greater than the original size and by filling in zeros to the stretched part. In VGG16, N is always
multiple of 16, but we cannot guarantee that K?C and HW are the multiples of 16, which forces
HW to deal with complex edge cases. Thus, we deliberately pad zeros to matrices in SW so that
HW can always assume that the heights and the widths are multiples of 16.

ESE539 Final Project, Philadelphia, PA,
Accelerating VGG16 DCNN with an FPGA

Memory Memory

buf_filter buf_input buf_outut buf_filter buf_input buf_outut

col2im C——
IEO_I_, I: j 16x16 —‘ mat
_______________________________ b —— Sys ary accum

C++
Q

S Q
< = FPGA | |
;'% 8I weights inputs bias + output
&
Host
& > Q\}
RS © 5 S
¢® Q ot &
N e
P N
N\

Fig. 2. System Diagram

HW computes matrix multiplications with 16 X 16 systolic array and accumulates result. When
the computation is finished, the output data is migrated back to the host memory, and the host
performs col2im to restore the image dimension. We add bias in Python domain to complete a
computation for a single convolutional layer. Note that there are only two 16 X 16 systolic array
compute units on FPGA, and each convolutional layer in VGG16 is computed sequentially.

2.2 Workflow

To ease the debugging burden, we make a small progress step by step as shown in Fig. 3. We start
from creating a pure C++ implementation without any OpenCL constructs. This step verifies our
im2col and col2im and sets up the high level system structure. Then, we create HLS kernel with
Vitis HLS. The kernel is verified with C simulation(Milestone 1). The related codes pushed in the
github are mmult.cpp and mmult.h. Next, we create OpenCL host code to utilize HLS kernel. In
this step, a single convolution computation is tested with different sizes of inputs(Milestone 2).
Once, we make sure that a single convolution works identical to PyTorch’s 2D convolution, we
perform inference for our network integrated with a HW accelerated convolution in SW emulation
mode(Milestone 1, 3). The related Python code pushed in the github is benchmark. py. SW emulation
is rather slow, but it checks functionality of our design. Finally, we build xclbin file, run on HW,
and perform further optimizations(Milestone 4, 5, 6).

2.3 Kernel Optimization

This section is related to Milestone 6.

2.3.1 Data Reuse. As shown in Fig. 4, our kernel loads a line of filter data to a local mem-
ory(lineBufferA) and loads a line of input image to another local memory(lineBufferB). Note

ESE539 Final Project, Philadelphia, PA,

Dongjoon Park and Pranoti Dhamal

PyTorch, pure C++

s

HLS kernel, mmult

1]

OpenCL integration,
a single conv2d
functionality testing

|

SW emulation

L

HW

Fig. 3. Workflow

32 32 32 32 32 32
—A et Vet Vet
ineBufferA_0] 16] 7
N filter * =5 |3 = output N
S15|5 image in
= =
kel |g | @ | @
%(—/ o | 5 | % \ ~ J
K2C HW
N i J
N
HW

Fig. 4. lineBufferA is reused for different lineBufferBs; C: input ch, N: output ch, K: filter width, height, H:
output height, W: output width

that the height of 1ineBufferaA is 16, while the width of 1ineBufferB is 32. We initially have the
width of 16 for 1ineBufferB as well but the runtime for the kernel was too short that we could not
take advantages of using 2 compute units. When the width of 1ineBufferB is 16, by the time we
enqueue the next kernel, the current kernel is already finished. Therefore, we increase the width of
lineBufferB so that the kernel runtime is possibly doubled.

In our design, the size of 1ineBufferA and 1ineBufferB are maxed out to the maximum size of
K2C. In VGG16, it is 4608 = 512 X 9, so we simply set the maximum size of the local memory as
16 X 4700 and 4700 x 32 for 1ineBufferA and lineBufferB respectively. We are aware of the fact
that the system will suffer from the severe under-utilization of the local memory, but we believe
this is the simplest approach.

A single call of the HW kernel will generate 16 X 32 output block. Note that when we compute
the next 16 X 32 output block, we do not need to re-read 1ineBufferA. So we exploit data reuse by
loading 1ineBufferA only when the kernel computes the first column of the output matrix.

2.3.2 Multiple Compute Units. We utilize 2 compute units as specified in the project rules. To
schedule 2 compute units, we can either run 2 compute units to compute a single image together
or run 2 compute units to work on different batches of the images. These two different scheduling
are compared in Sec. 3.1.

ESE539 Final Project, Philadelphia, PA,
Accelerating VGG16 DCNN with an FPGA

Table 1. Runtime of VGG16(seconds)

Design (1,1) (1,16) (16,1) (16,16) FOM

SW 148 1800 N.M. NM. NM.

HW(1) 30 437 NM. NM. NM

HW(1), 000, xclbin load 24 280 N.M. NM. NM.
HW(Z), batch/CU 16 154 269 2515 1392
HW(Z), together 1img 10 158 166 2578 1372
PyTorch, vanilla N.M. NM. 428 39 21.64

2.4 Host Optimization

This section is related to Milestone 5. We enable Out-order-Queue in the host code’s command
queue 1)to overlap communication and computation and 2)to enable concurrent kernel runs for 2
compute units [3]. We also read binary and program it only once. Host code is called from PyTorch
13 times because there are 13 convolutional layers in VGG16. Because we use the same xclbin, we
can amortize the time spent on c1CreateProgramWithBianry for 13 host code calls.

3 EVALUATION
3.1 Runtime

The results are illustrated in Tab. 1. Each tuple on the top row represents (number of inference,
batch size). So (1, 1) is the runtime for a single inference in batch-1 case. The number after HW in
Design column is the number of computing units. N.M. stands for "Not Measured." As expected, SW
version without any HW acceleration takes a long time to finish even a single inference. HW(1),
000, xclbin load represents the design with Out-of-Order queue and reduced xclbin load time
discussed in Sec. 2.4. Note that we increase a kernel load for HW with 2 compute units as described
in Sec. 2.3.1. HW(2), batch/CU is the version with 2 compute units, and each compute unit works
on different batches.

HW(2), together 1 img is the version with 2 compute units, and two compute units together work
on the same image as shown in Fig. 5. One compute unit is responsible for the upper half, and
another is responsible for the lower half of the output image. FOM, defined as the average runtime
of 16 inferences of batch-1 case and batch-16 case, is 1372 seconds.

Compute unit 0 Compute unit 0
N < f-mmm e — — = R e ->N
Compute unit 1 . image in Compute unit 1
K“C N J
- Y
K2C HW
N J

Y
HW

Fig. 5. Two compute units are scheduled to work on a single image

Fig. 6 shows the runtime of each components for both batch-1 case and batch-16 case in HW(2),
together 1 img case. "host" includes the OpenCL setup, running kernels, and writing the output.
Fig. 7 shows the runtime breakdown for "host". 99% of the time is spent on running kernels, which

ESE539 Final Project, Philadelphia, PA,
Dongjoon Park and Pranoti Dhamal

Table 2. Accuracy(%)

Design. batch-1 batch-16

HW(2), batch/CU 88.2353 86.7647
HW(2), together 1img 88.2353 86.7647

PyTorch, together 1img 88.2353 86.7647

includes reading/writing data from host to FPGA memory, enqueing tasks, and waiting for FPGA
execution to finish.

When we check the Vitis Analyzer for the further profiling, the kernel is still too short even
though we doubled the work done by kernel as discussed in Sec. 2.3.1. Furthermore, our host
code calls kernels too frequently. Short kernel runtime and frequent kernel calls together create
communication overhead. The easiest method to resolve the issue is to create lager systolic array,
for instance 32 x 32. This will reduce the kernel calls about 4 times while increasing the kernel
runtime about 4 times. As we mentioned early in this section, because we decided to stick to the
project rules on the size of the systolic array and the data type, we leave this as the future work.

H im2row

im2col
M host

M col2im
batchl ptr2Ten

Fig. 6. Runtime breakdown

H setup

W kernel

output write

Fig. 7. "host" runtime breakdown

3.2 Accuracy

PyTorch’s vanilla version returns the accuracy of 88.2353% and 86.7647% for batch-1 case and
batch-16 case respectively. Both HW(2), batch/CU and HW(2), together 1 img return the accuracy of
88.2353% and 86.7647%, which are exactly same as the PyTorch’s vanilla version.

ESE539 Final Project, Philadelphia, PA,
Accelerating VGG16 DCNN with an FPGA

Table 3. Resource Usage, for 2 kernels

LUT REG BRAM DSP
HW(2) 226905(23.29%) 289336(14.08%) 514(27.25%) 716(10.48%)

3.3 Resource Usage

We use only 716 DSPs, which are far less than the project limit, 2048 DSPs for 2 compute units. The
% in the parenthesis is the utilization of the entire FPGA chip.

4 CONCLUSION

Although our HW-accelerated VGG16 is orders of magnitude slower than VGG16 with PyTorch’s
vanilla 2D convolution, ours outperforms the initial software version by x14.8 and %11 for batch-1
case and batch-16 case respectively. We believe that we can match or even outperform PyTorch’s

2D convolution if we quantize the data type and increase the size of systolic array to fully utilize
FPGA resources.

REFERENCES

[1] Peter Goldsborough. 2019. Tutorials: Custom C++ and CUDA Extensions. Retrieved December 12, 2021 from https:
//pytorch.org/tutorials/advanced/cpp_extension.html

[2] Xilinx Inc. 2021. Vitis High-Level Synthesis User Guide. https://www.xilinx.com/support/documentation/sw_manuals/
xilinx2020_2/ug1399-vitis-hls.pdf.

[3] Xilinx Inc. 2021. Vitis Unified Software Platform Documentation: Application Acceleration Development. https://www.
xilinx.com/support/documentation/sw_manuals/xilinx2020_2/ug1393-vitis-application-acceleration.pdf.

[4] Manas Sahni. 2019. Anatomy of a High-Speed Convolution. Retrieved December 14, 2021 from https://sahnimanas.
github.io/post/anatomy- of-a-high-performance-convolution/

https://pytorch.org/tutorials/advanced/cpp_extension.html
https://pytorch.org/tutorials/advanced/cpp_extension.html
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_2/ug1399-vitis-hls.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_2/ug1399-vitis-hls.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_2/ug1393-vitis-application-acceleration.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_2/ug1393-vitis-application-acceleration.pdf
https://sahnimanas.github.io/post/anatomy-of-a-high-performance-convolution/
https://sahnimanas.github.io/post/anatomy-of-a-high-performance-convolution/

	Abstract
	1 Introduction
	2 Methodology
	2.1 System Overview
	2.2 Workflow
	2.3 Kernel Optimization
	2.4 Host Optimization

	3 Evaluation
	3.1 Runtime
	3.2 Accuracy
	3.3 Resource Usage

	4 Conclusion
	References

