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Productivity, IP library, 
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FPGA development is much 
more challenging than SW 

development!
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Motivation

• So, what is so good about SW development?

1) Parallel compile, Incremental Refinement

2) Rich profiling tools

• How’s current HW development?

1) Parallel compile? Incremental Refinement?

2) Profiling? Bottleneck identification?

• Overall goal: SW-like FPGA design development

– Fast Separate Compilation in Parallel using 
NoC + (Hierarchical) Partial Reconfiguration

– Incremental Refinement strategy

– Profiling using FIFO counters
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Idea – Separate compilation in Parallel using Partial Reconfiguration

• Problem: Slow monolithic FPGA compilation

• Idea: Fast Separate Compilation in Parallel using 
Partial Reconfiguration (PR)
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Idea – Separate compilation in Parallel using Partial Reconfiguration

• Idea: Fast Separate Compilation in Parallel using 
Partial Reconfiguration (PR)

– Pioneering work on separate compilation on FPGA using PR[1,2]

– Parallel/Incremental compilation is supported

– Utilized a (deflection-routed) 
Butterfly Fat Tree Network for the NoC

2
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• Results

– Demonstrated 30 min of PnR/bit-gen time with Xilinx Vivado can be 
reduced to 7 min with separate compile on a 31-multicore design[1]

– More HLS benchmarks illustrated in [2] led by Yuanlong Xiao

– Analyzed the Vivado’s compile time[2]

• Full benefit is not achieved in [1,2] because of tool limitation

• Even though the static logic is static, Vivado still
spends time in loading the design

2
4

[1] Park et al., “Case for Fast FPGA Compilation Using Partial Reconfiguration”, FPL 2018
[2] Xiao et al., “Reducing FPGA Compile Time with Separate Compilation for FPGA Building Blocks”, FPT 2019

Idea – Separate compilation in Parallel using Partial Reconfiguration



• Results

– Demonstrated 30 min of PnR/bit-gen time with Xilinx Vivado can be 
reduced to 7 min with separate compile on a 31-multicore design[1]

– More HLS benchmarks illustrated in [2] led by Yuanlong Xiao

– Analyzed the Vivado’s compile time[2]

• Full benefit is not achieved in [1,2] because of tool limitation

• Even though the static logic is static, Vivado still
spends time in loading the design

2
5

• This part is static(fixed), so ideally, we 
don’t want to spend any time compiling.

➔ But Vivado does spend time even for the 
fixed static logic.

• Larger static design leads to longer 
compile time in PR[2]

Static Logic and Compile Time

[1] Park et al., “Case for Fast FPGA Compilation Using Partial Reconfiguration”, FPL 2018
[2] Xiao et al., “Reducing FPGA Compile Time with Separate Compilation for FPGA Building Blocks”, FPT 2019
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Idea – Separate compilation in Parallel using Partial Reconfiguration

• Q. Does the user have to decompose a design into regularly-
sized operators?

2
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Idea – More Flexibility using Hierarchical PR

• Problem: Fixed-sized pages in separate compilations approaches

1) If the pages are large, it reduces the benefit of 
separate compilations.

2) If the pages are small, the users need to manually divide the design 
into small operators. Also causes NoC bandwidth bottleneck.

3
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• Problem: Fixed-sized pages in separate compilations approaches

1) If the pages are large, it reduces the benefit of 
separate compilations.

2) If the pages are small, the users need to manually divide the design 
into small operators. Also causes NoC bandwidth bottleneck.
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Too much data going 
through limited 
channels!
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Idea – More Flexibility using Hierarchical PR

• Idea: Flexible-sized PR pages using Hierarchical PR[3]

– Supported by Xilinx since tool ver. 2020.1 (2020)

• A.k.a Nested DFX

– Partial region inside partial region

3
4

Small Pages Large Pages Hierarchical Pages [3]

Single, 
Double, 
Quad Page

[3] Park et al., “Fast and Flexible FPGA Development using Hierarchical Partial Reconfiguration”, FPT 2022
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• Idea: Flexible-sized PR pages using Hierarchical PR[3]
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Idea – More Flexibility using Hierarchical PR

• Idea: Flexible-sized PR pages using Hierarchical PR[3]
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[3] Park et al., “Fast and Flexible FPGA Development using Hierarchical Partial Reconfiguration”, FPT 2022
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Idea – More Flexibility using Hierarchical PR

• Idea: Flexible-sized PR pages using Hierarchical PR[3]
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Idea – More Flexibility using Hierarchical PR

• Idea: Flexible-sized PR pages using Hierarchical PR[3]

• Advantages

– Fine-grained separate compilations with single pages 
➔ maximize benefits of fast separate compilations

– Users are not forced to decompose a design into small 
operators. They can use double pages or quad pages.
➔ flexible framework

– Useful in incremental refinement
➔ Users can quickly start from natural decomposition 

and incrementally refine just like SW!

3
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Idea – More Flexibility using Hierarchical PR

• Results – detailed results in [3]

– Improves application performance by 1.4~4.9x compared to a fixed-
sized pages system on Rosetta HLS benchmarks[4]

• Remove NoC bandwidth by merging ops

• Use more area for single operator

3
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<Remove NoC bandwidth bottleneck by merging ops>

[3] Park et al., “Fast and Flexible FPGA Development using Hierarchical Partial Reconfiguration”, FPT 2022
[4] Zhou et al., “Rosetta: A realistic high-level synthesis benchmark suite for software programmable FPGAs”, FPGA 2018
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Idea – More Flexibility using Hierarchical PR

• Results – detailed results in [3]

– Improves application performance by 1.4~4.9x compared to a fixed-
sized pages system on Rosetta HLS benchmarks[4]

• Remove NoC bandwidth by merging ops

• Use more area for single operator

– While compiling 2.2~5.3x faster than AMD-Xilinx Vitis

• In incremental refinement scenario, a single page takes 
less than 2 minutes to compile (HLS → partial bitstream)
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Idea – More Flexibility using Hierarchical PR

• More enhancements on the separate compilation framework[5]

– Mitigate NoC bandwidth bottleneck

• Use multiple NoC interfaces

4
2

[5] Park et al., “REFINE: Runtime Execution Feedback for INcremental Evolution on FPGA Designs”, FPGA 2024
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4
3
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Idea – Incremental Refinement Strategy and Profiling

• Remember, the goal: “SW-like FPGA design development”

– Fast Separate Compilation in Parallel using 
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• Remember, the goal: “SW-like FPGA design development”

– Fast Separate Compilation in Parallel using 
NoC + (Hierarchical) Partial Reconfiguration

– Incremental Refinement strategy

– Profiling using FIFO counters

• Problem: Is the previous NoC+PR system enough for the 
incremental refinement on FPGA designs?
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Idea – Incremental Refinement Strategy and Profiling

• Problem: Is the previous NoC+PR system enough for the 
incremental refinement on FPGA designs?

– NoC-based system

• Pro: Faster compile

– Parallel, incremental

• Con: NoC overhead

– Area, Bandwidth

– Monolithic system

• Pro: No NoC overhead

• Con: Slow compile
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Idea – Incremental Refinement Strategy and Profiling

• Idea: Fast incremental refinement strategy[5] 

– Start with the NoC-based system

– Identify the bottleneck and select the next design point

– When a design can’t be improved in the NoC-based system, 
(e.g. not enough area in PR page, design space is all explored)
migrate to the monolithic system

– Continue to identify the bottleneck and select the next design point

5
1

[5] Park et al., “REFINE: Runtime Execution Feedback for INcremental Evolution on FPGA Designs”, FPGA 2024

Fast compile with NoC + PR NoC is removed!



Idea – Incremental Refinement Strategy and Profiling

• Problem: No profiling capability. How to identify a bottleneck of a 
design in HW?

• Idea: Bottleneck identification using FIFO counters

– NoC-based system

• Pro: Faster compile

– Parallel, incremental

• Con: NoC overhead

– Area, Bandwidth

– Monolithic system

• Pro: No NoC overhead

• Con: Slow compile

5
2

A NoC

Recall!
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• Idea: Bottleneck identification using FIFO counters

– High-level intuition

5
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Idea – Incremental Refinement Strategy and Profiling

• Idea: Bottleneck identification using FIFO counters

– High-level intuition

5
6

Doesn’t stall!

Stalls!Stalls!Stalls!

1 32 4

Bottleneck!



Idea – Incremental Refinement Strategy and Profiling

• Idea: Bottleneck identification using FIFO counters[5]

1) bottleneck operator 
→ embedded in both NoC system, monolithic system

Stall condition: at least one FIFO stalls, stall cnt++
➔ Op with the least stall cnts may be the bottleneck

5
7

[5] Park et al., “REFINE: Runtime Execution Feedback for INcremental Evolution on FPGA Designs”, FPGA 2024
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- Harms application performance
- Wrong bottleneck operator can be identified

32b32b
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2) NoC bandwidth bottleneck 
→ embedded in only NoC system

[5] Park et al., “REFINE: Runtime Execution Feedback for INcremental Evolution on FPGA Designs”, FPGA 2024
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2) NoC bandwidth bottleneck 
→ embedded in only NoC system

If A’s Output FIFO’s full↑ && B’s Input FIFO’s full↓
➔ NoC bandwidth may be the bottleneck

[5] Park et al., “REFINE: Runtime Execution Feedback for INcremental Evolution on FPGA Designs”, FPGA 2024



Idea – Incremental Refinement Strategy and Profiling

• Results: Design Space Exploration (DSE) case study

– Observe application performance improvement 
with bottleneck identification

– Compare design tuning time of 
our fast incremental refinement strategy vs monolithic-only flow
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Idea – Incremental Refinement Strategy and Profiling

• Results: Design Space Exploration (DSE) case study

6
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<Automated DSE experiment overview>
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• Results: Design Space Exploration (DSE) case study
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• Results: Design Space Exploration (DSE) case study

L_3_1 L_2_0

L_2_1 L_3_0 L_1_1

L_4_1 L_4_0 L_1_0

L_5_1 L_5_0 L_0_1
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• Results: Design Space Exploration (DSE) case study
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• Results: Design Space Exploration (DSE) case study
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• Results: Design Space Exploration (DSE) case study

L_3_1 L_2_0
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And so on…
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L_last_1 L_2_0 L_3_0
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L_5_0 L_2_1
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L_0_0
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• Results: Design Space Exploration (DSE) case study

Already reached the final design point

➔Migrate to monolithic flow
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<NoC-based system>
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• Results: Design Space Exploration (DSE) case study

PS

• Wanted to show that 14 operators are monolithically 
compiled (slow)

• NoC is removed
• Continues to identify the bottleneck and refine until the 

design space is all explored

<Monolithic system – Just an illustration…>

Idea – Incremental Refinement Strategy and Profiling
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Example: CNN-2 benchmark
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• Reduce tuning time by 1.3~2.7× while 
improving application latency by 2.2~12.7×

<Selected DSE results: Our incr. refinement strategy vs Monolithic only>[5]

Idea – Incremental Refinement Strategy and Profiling

7
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[5] Park et al., “REFINE: Runtime Execution Feedback for INcremental Evolution on FPGA Designs”, FPGA 2024
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• Advantages

– Just like SW, we can quickly map the application on the FPGA, profile 
to find the bottleneck, and recompile only the functions that have 
changed

– Faster tuning time is expected because initial design points are 
iterated with the fast separate compilation (2~3 min in some cases)

– No loss in the performance for the final design
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Discussion & Conclusion
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• How is it related to FPGAs with hard NoC(e.g. AMD Versal)?

– Can create similar hard NoC + PR pages platform

• Limited NoC ports? Soft switch logic, Hierarchical PR pages

– Can instantiate similar FIFO counter logic in NoC interfaces

– Don’t need to migrate to monolithic system

[6] I. Swarbrick et al., “Network-on-Chip Programmable Platform in Versal ACAP Architecture”, FPGA 2019

<Example Versal Floorplan[6]>
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• How is it related to RapidWright from AMD Research?
– RapidWright is an open source framework that enables netlist and 

implementation manipulation

– Fast FPGA compilation work with RapidWright: [7,8,9] 

– PR is top-down, using a pre-routed overlay

• Pro: don’t need global stitching

• Con: Requires NoC, NoC BW could be bottleneck

– [11] doesn’t use NoC but still uses PR. (switchbox PR pages)

– RapidWright, bottom-up, going through the global stitching

• Pro: don’t need NoC

• Con: Requires global stitching 

– Fast routing challenge!

[7] Thomas et al., “Software-like Compilation for Data Center FPGA Accelerators”, HEART 2021
[8] Guo et al., “RapidStream: Parallel Physical Implementation of FPGA HLS Designs”, FPGA 2022
[9] Nguyen et al., “SPADES: A Productive Design Flow for Versal Programmable Logic”, FPL 2023
[11] Xiao et al., “Fast linking of separately-compiled FPGA blocks without a NoC”, FPT 2020
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• Soft NoC consumes FPGA resources

– For all traffic patterns, is the current BFT NoC the best?

• Some exploration for highly unbalanced traffic in [10]

• Conclusion

– SW-like Incremental Refinement FPGA development

• Fast Separate Compilation in Parallel using 
NoC + (Hierarchical) Partial Reconfiguration

• Incremental Refinement strategy

• Profiling using FIFO counters

[10] Park et al., “Asymmetry in Butterfly Fat Tree FPGA NoC”, FPT 2023

Thank you ☺



• Q. Doesn’t Vivado support Out-of-Context flow? Without PR?

– In synthesis, does save compile time. 

• HLS/Synthesize A.cpp, B.cpp, C.cpp, D.cpp

• Then, stitch *.dcp ➔ Top-level stitching isn’t time-consuming

– In implementation, does NOT save compile time.

7
7

A.cpp B.cpp C.cpp D.cpp

Separate HLS/Synthesis/Place/Route

Vendor tool (Vivado) imports separately 

placed/routed DCP files and runs another 

top-level place/route

<Hierarchical Design Tutorial, ug946>

Appendix
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• Q. Why do you need a NoC? Why not just PR pages?

– Then, the static logic is application-specific 
➔ Need a new static logic for each application?

<NoC + PR pages>

A CB D

B D

A C

A
C

B
D

?

<No NoC, only PR pages>

Appendix
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A
C

B
D EA

C

B
D

?

• Q. Why do you need a NoC? Why not just PR pages?

– Then, the static logic is application-specific 
➔ Need a new static logic for each application?
➔ Can’t add new operator. Interconnection between operators can’t 

change

<No NoC, only PR pages>

B D

A C
<NoC + PR pages>

Appendix
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• Q. Why do you need a NoC? Why not just PR pages?

– Then, the static logic is application-specific 
➔ Need a new static logic for each application?
➔ Can’t add new operator. Interconnection between operators can’t 

change

– If you are fixed with interconnections of operators, then possible![10]

– Or with switchbox PR pages[11], possible! ➔ More wires

[10] Xiao et al., “HiPR: High-level partial reconfiguration for fast incremental FPGA compilation”, FPL 2022
[11] Xiao et al., “Fast linking of separately-compiled FPGA blocks without a NoC”, FPT 2020

<SW PR pages + Logic PR pages>[11]<No NoC, only PR pages>[10]

B D

A C

<NoC + PR pages>

Appendix
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• Q. Some limitations on Vivado PR technology?

– Abstract shell, not perfect

• In [3], size of static design of abstract shell(quad page): 
129 LUTs~15508 LUTs ➔ Had some workaround in [3]

• Note: size of quad page is about 30K LUTs

8
1

[3] Park et al., “Fast and Flexible FPGA Development using Hierarchical Partial Reconfiguration”, FPT 2022
[5] Park et al., “REFINE: Runtime Execution Feedback for INcremental Evolution on FPGA Designs”, FPGA 2024
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• In [3], size of static design of abstract shell(quad page): 
129 LUTs~15508 LUTs ➔ Had some workaround in [3]

• Note: size of quad page is about 30K LUTs

– Static routing over reconfigurable regions

• Addressed in [5]

– Reconfigurable module relocation?

• Note that in page assignment, if it needs to be moved to a 
different single-sized page, it needs to be newly placed/routed.
➔ Partial bitstreams can’t be simply relocated
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[3] Park et al., “Fast and Flexible FPGA Development using Hierarchical Partial Reconfiguration”, FPT 2022
[5] Park et al., “REFINE: Runtime Execution Feedback for INcremental Evolution on FPGA Designs”, FPGA 2024
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• Q. Some limitations on Vivado PR technology?

– Abstract shell, not perfect

• In [3], size of static design of abstract shell(quad page): 
129 LUTs~15508 LUTs ➔ Had some workaround in [3]

• Note: size of quad page is about 30K LUTs

– Static routing over reconfigurable regions

• Addressed in [5]

– Reconfigurable module relocation?

• Note that in page assignment, if it needs to be moved to a 
different single-sized page, it needs to be newly placed/routed.
➔ Partial bitstreams can’t be simply relocated

8
3

[3] Park et al., “Fast and Flexible FPGA Development using Hierarchical Partial Reconfiguration”, FPT 2022
[5] Park et al., “REFINE: Runtime Execution Feedback for INcremental Evolution on FPGA Designs”, FPGA 2024

• In Vivado PR, static net can route over reconfigurable regions
• static reconfigurable:  interface nets
• static static: can be prevented ➔ CONTAIN_ROUTING ON

Static routing, PROrange: NoC, Cyan: Pipeline regs



Appendix

• Q. How to determine whether a synthesized netlist 
fits in a PR page or not?
– Irregular columnar resource distribution of FPGAs

– AMD PR technology allows static routing to route 
over PR pages

– Every design (netlist) has different routing 
complexity

• E.g. 60% LUT util could fail in some designs 
while even 80% LUT util doesn’t fail in some 
designs

• Our solution
– Per each PR page, train a classifier that predicts 

whether a netlist can be successfully mapped 
or not

– Train input: a variety of designs with different 
resource util, Rent complexity, etc

– Features: post-synthesis resource estimates, Rent 
value, average fanout, total instances

A.cpp B.cpp C.cpp D.cpp

Page Assignment

8
4



Appendix

• Q. How difficult is the designs decomposition?

– For some designs, intuitive

– For some designs, more challenging

– Some of our benchmarks are from Rosetta HLS benchmark[3] that 
are not necessarily in dataflow form

L_0_0 L_0_1 L_1_0 L_1_1

L_2_0 L_2_1 L_3_0 L_3_1

L_4_0 L_4_1 L_5_0 L_5_1

L_last_0 L_last_1 L_last_2

[3] Zhou et al., “Rosetta: A realistic high-level synthesis benchmark suite for software programmable FPGAs”, FPGA 2018
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Appendix

• Q. Final design point of our incremental strategy vs monolithic-
only flow?

– In our experiments, they reach to the similar final design points

– But

• sometimes the final design point of the NoC flow doesn't meet 
the timing in the monolithic flow 

• sometimes NoC flow fails earlier than the monolithic-only flow

• sometime monolithic-only flow fails earlier than the NoC flow

• Different implementation directives?

8
6
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