
Software-like Incremental Refinement
on FPGA using Partial Reconfiguration

1

Dongjoon(DJ) Park

Advisor: Prof. André DeHon

Implementation of Computation Group

University of Pennsylvania

Talk at AMD, San Jose

Table of Contents

• Motivation

• Idea – Separate compilation in Parallel using Partial Reconfiguration

• Idea – More Flexibility using Hierarchical PR

• Idea – Incremental Refinement Strategy and Profiling

• Discussion & Conclusion

2

Table of Contents

• Motivation

• Idea – Separate compilation in Parallel using Partial Reconfiguration

• Idea – More Flexibility using Hierarchical PR

• Idea – Incremental Refinement Strategy and Profiling

• Discussion & Conclusion

3

Motivation

• Two days ago… Banquet at FPGA2024

– AI, FPGA vs GPU

4

Industry Academia

Existing customers complain for
5% quality drop even if we offer

2x compile speedup …

FPGA compile takes forever.
Productivity, IP library,

Incremental compilation …

Enhancements in
productivity invite
NEW customers …

Motivation

• Two days ago… Banquet at FPGA2024

– AI, FPGA vs GPU

5

Industry Academia

Existing customers complain for
5% quality drop even if we offer

2x compile speedup …

FPGA compile takes forever.
Productivity, IP library,

Incremental compilation …

Enhancements in
productivity invite
NEW customers …

FPGA development is much
more challenging than SW

development!

Motivation

• So, what is so good about SW development?

1) Parallel compile, Incremental Refinement

A.cpp

B.cpp

A.o

B.o

Linker Executable

C.oC.cpp

6

Parallel
compile

Motivation

• So, what is so good about SW development?

1) Parallel compile, Incremental Refinement

A.cpp

B.cpp

A.o

B.o

Linker Executable

C.oC.cpp

7

Parallel
compile

Motivation

• So, what is so good about SW development?

1) Parallel compile, Incremental Refinement

A.cpp

B.cpp

A.o

B.o

Linker Executable

C.oC.cpp

D.oD.cpp

8

Motivation

• So, what is so good about SW development?

1) Parallel compile, Incremental Refinement

A’.cpp

B.cpp

A’.o

B.o

Linker Executable

C.oC.cpp

D.oD.cpp

9

Motivation

• So, what is so good about SW development?

1) Parallel compile, Incremental Refinement

A’.cpp

B’.cpp

A’.o

B’.o

Linker Executable

C’.oC’.cpp

D.oD.cpp

1
0

Motivation

• So, what is so good about SW development?

1) Parallel compile, Incremental Refinement

A’.cpp

B’.cpp

A’.o

B’.o

Linker Executable

C’.oC’.cpp

D.oD.cpp

1
1

E.oE.cpp

F.oF.cpp

Motivation

• So, what is so good about SW development?

1) Parallel compile, Incremental Refinement

2) Rich profiling tools

1
2

SW engineers can easily profile the application
to investigate where the application spent its time on.

Motivation

• So, what is so good about SW development?

1) Parallel compile, Incremental Refinement

2) Rich profiling tools

• How’s current HW development?

1) Parallel compile? Incremental Refinement?

1
3

Q. Can we compile each function in parallel?
(not synthesis but place/route/bit-gen)

A. No, a design is monolithically compiled
➔Tool tries to optimize the entire design
➔Long compile time

A

C

B
D E

Motivation

• So, what is so good about SW development?

1) Parallel compile, Incremental Refinement

2) Rich profiling tools

• How’s current HW development?

1) Parallel compile? Incremental Refinement?

1
4

A

C

B

D’ E

Q. Can we recompile only the changed part?

Motivation

• So, what is so good about SW development?

1) Parallel compile, Incremental Refinement

2) Rich profiling tools

• How’s current HW development?

1) Parallel compile? Incremental Refinement?

1
5

A

C

B

D’ E

Q. Can we recompile only the changed part?

Something like this!

Motivation

• So, what is so good about SW development?

1) Parallel compile, Incremental Refinement

2) Rich profiling tools

• How’s current HW development?

1) Parallel compile? Incremental Refinement?

1
6

A

C

B

D’ E

Q. Can we recompile only the changed part?

A. No, the entire design is monolithically
recompiled
➔ Long compile time

Motivation

• So, what is so good about SW development?

1) Parallel compile, Incremental Refinement

2) Rich profiling tools

• How’s current HW development?

1) Parallel compile? Incremental Refinement?

2) Profiling? Bottleneck identification?

1
7

A

C

B
D E

Q. How do we know which module to refine
next?

A. It’s difficult to identify the bottleneck
➔ Lack of visibility on the inner state of the
HW design

?

Motivation

• So, what is so good about SW development?

1) Parallel compile, Incremental Refinement

2) Rich profiling tools

• How’s current HW development?

1) Parallel compile? Incremental Refinement?

2) Profiling? Bottleneck identification?

• Overall goal: SW-like FPGA design development

– Fast Separate Compilation in Parallel using
NoC + (Hierarchical) Partial Reconfiguration

– Incremental Refinement strategy

– Profiling using FIFO counters

1
8

Table of Contents

• Motivation

• Idea – Separate compilation in Parallel using Partial Reconfiguration

• Idea – More Flexibility using Hierarchical PR

• Idea – Incremental Refinement Strategy and Profiling

• Discussion & Conclusion

1
9

Idea – Separate compilation in Parallel using Partial Reconfiguration

• Problem: Slow monolithic FPGA compilation

• Idea: Fast Separate Compilation in Parallel using
Partial Reconfiguration (PR)

2
0

A NoC

Network-on-Chip(NoC)

Fast separate compilation
in parallel using NoC + PR

A
B

C
D

“Operator”

Streaming
dataflow links

Vendor tool(Vivado, Quartus)’s slow
monolithic compilation

FPGA device

Partially compile FPGA
➔ Partial Reconfiguration

“Page”

A
B

C
D

Idea – Separate compilation in Parallel using Partial Reconfiguration

• Idea: Fast Separate Compilation in Parallel using
Partial Reconfiguration (PR)

– Pioneering work on separate compilation on FPGA using PR[1,2]

– Parallel/Incremental compilation is supported

– Utilized a (deflection-routed)
Butterfly Fat Tree Network for the NoC

2
1

[1] Park et al., “Case for Fast FPGA Compilation Using Partial Reconfiguration”, FPL 2018
[2] Xiao et al., “Reducing FPGA Compile Time with Separate Compilation for FPGA Building Blocks”, FPT 2019

A
B

C
D

Idea – Separate compilation in Parallel using Partial Reconfiguration

• Idea: Fast Separate Compilation in Parallel using
Partial Reconfiguration (PR)

– Pioneering work on separate compilation on FPGA using PR[1,2]

– Parallel/Incremental compilation is supported

– Utilized a (deflection-routed)
Butterfly Fat Tree Network for the NoC

2
2

[1] Park et al., “Case for Fast FPGA Compilation Using Partial Reconfiguration”, FPL 2018
[2] Xiao et al., “Reducing FPGA Compile Time with Separate Compilation for FPGA Building Blocks”, FPT 2019

A
B

D
C’

Idea – Separate compilation in Parallel using Partial Reconfiguration

• Idea: Fast Separate Compilation in Parallel using
Partial Reconfiguration (PR)

– Pioneering work on separate compilation on FPGA using PR[1,2]

– Parallel/Incremental compilation is supported

– Utilized a (deflection-routed)
Butterfly Fat Tree Network for the NoC

2
3

π π

π π

t

π π

t

π π

t

π π

t

t

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

<Butterfly Fat Tree, 16 PEs>

[1] Park et al., “Case for Fast FPGA Compilation Using Partial Reconfiguration”, FPL 2018
[2] Xiao et al., “Reducing FPGA Compile Time with Separate Compilation for FPGA Building Blocks”, FPT 2019

A
B

D
C’

• Results

– Demonstrated 30 min of PnR/bit-gen time with Xilinx Vivado can be
reduced to 7 min with separate compile on a 31-multicore design[1]

– More HLS benchmarks illustrated in [2] led by Yuanlong Xiao

– Analyzed the Vivado’s compile time[2]

• Full benefit is not achieved in [1,2] because of tool limitation

• Even though the static logic is static, Vivado still
spends time in loading the design

2
4

[1] Park et al., “Case for Fast FPGA Compilation Using Partial Reconfiguration”, FPL 2018
[2] Xiao et al., “Reducing FPGA Compile Time with Separate Compilation for FPGA Building Blocks”, FPT 2019

Idea – Separate compilation in Parallel using Partial Reconfiguration

• Results

– Demonstrated 30 min of PnR/bit-gen time with Xilinx Vivado can be
reduced to 7 min with separate compile on a 31-multicore design[1]

– More HLS benchmarks illustrated in [2] led by Yuanlong Xiao

– Analyzed the Vivado’s compile time[2]

• Full benefit is not achieved in [1,2] because of tool limitation

• Even though the static logic is static, Vivado still
spends time in loading the design

2
5

• This part is static(fixed), so ideally, we
don’t want to spend any time compiling.

➔ But Vivado does spend time even for the
fixed static logic.

• Larger static design leads to longer
compile time in PR[2]

Static Logic and Compile Time

[1] Park et al., “Case for Fast FPGA Compilation Using Partial Reconfiguration”, FPL 2018
[2] Xiao et al., “Reducing FPGA Compile Time with Separate Compilation for FPGA Building Blocks”, FPT 2019

Idea – Separate compilation in Parallel using Partial Reconfiguration

• Results

– Demonstrated 30 min of PnR/bit-gen time with Xilinx Vivado can be
reduced to 7 min with separate compile on a 31-multicore design[1]

– More HLS benchmarks illustrated in [2] led by Yuanlong Xiao

– Analyzed the Vivado’s compile time[2]

• Full benefit is not achieved in [1,2] because of tool limitation

• Even though the static logic is static, Vivado still
spends time in loading the design

• This issue was mitigated in Xilinx tool ver. 2020.2

– Abstract Shell: contains minimal logical and physical database

2
6

[1] Park et al., “Case for Fast FPGA Compilation Using Partial Reconfiguration”, FPL 2018
[2] Xiao et al., “Reducing FPGA Compile Time with Separate Compilation for FPGA Building Blocks”, FPT 2019

Idea – Separate compilation in Parallel using Partial Reconfiguration

• Results

– Demonstrated 30 min of PnR/bit-gen time with Xilinx Vivado can be
reduced to 7 min with separate compile on a 31-multicore design[1]

– More HLS benchmarks illustrated in [2] led by Yuanlong Xiao

– Analyzed the Vivado’s compile time[2]

• Full benefit is not achieved in [1,2] because of tool limitation

• Even though the static logic is static, Vivado still
spends time in loading the design

• This issue was mitigated in Xilinx tool ver. 2020.2

– Abstract Shell: contains minimal logical and physical database

2
7

[1] Park et al., “Case for Fast FPGA Compilation Using Partial Reconfiguration”, FPL 2018
[2] Xiao et al., “Reducing FPGA Compile Time with Separate Compilation for FPGA Building Blocks”, FPT 2019

Abstract Shell

Idea – Separate compilation in Parallel using Partial Reconfiguration

Idea – Separate compilation in Parallel using Partial Reconfiguration

• Q. Does the user have to decompose a design into regularly-
sized operators?

2
8

<Fixed-sized pages>

A
B

C
D

Table of Contents

• Motivation

• Idea – Separate compilation in Parallel using Partial Reconfiguration

• Idea – More Flexibility using Hierarchical PR

• Idea – Incremental Refinement Strategy and Profiling

• Discussion & Conclusion

2
9

Idea – More Flexibility using Hierarchical PR

• Problem: Fixed-sized pages in separate compilations approaches

– What if the sizes of operators are unbalanced?

3
0

A
B

C
D A

B

C
D

Idea – More Flexibility using Hierarchical PR

• Problem: Fixed-sized pages in separate compilations approaches

– What if the sizes of operators are unbalanced?

– What if a user wants to optimized further?

3
1

A

B

C
DA

B

C
D

Idea – More Flexibility using Hierarchical PR

• Problem: Fixed-sized pages in separate compilations approaches

1) If the pages are large, it reduces the benefit of
separate compilations.

2) If the pages are small, the users need to manually divide the design
into small operators. Also causes NoC bandwidth bottleneck.

3
2

NoC

Small Pages Large Pages

Idea – More Flexibility using Hierarchical PR

• Problem: Fixed-sized pages in separate compilations approaches

1) If the pages are large, it reduces the benefit of
separate compilations.

2) If the pages are small, the users need to manually divide the design
into small operators. Also causes NoC bandwidth bottleneck.

3
3

Small Pages Large Pages

Too much data going
through limited
channels!

NoC

Idea – More Flexibility using Hierarchical PR

• Idea: Flexible-sized PR pages using Hierarchical PR[3]

– Supported by Xilinx since tool ver. 2020.1 (2020)

• A.k.a Nested DFX

– Partial region inside partial region

3
4

Small Pages Large Pages Hierarchical Pages [3]

Single,
Double,
Quad Page

[3] Park et al., “Fast and Flexible FPGA Development using Hierarchical Partial Reconfiguration”, FPT 2022

Idea – More Flexibility using Hierarchical PR

• Idea: Flexible-sized PR pages using Hierarchical PR[3]

3
5

[3] Park et al., “Fast and Flexible FPGA Development using Hierarchical Partial Reconfiguration”, FPT 2022

A
B

C
D

A

B

C
D

Idea – More Flexibility using Hierarchical PR

• Idea: Flexible-sized PR pages using Hierarchical PR[3]

3
6

[3] Park et al., “Fast and Flexible FPGA Development using Hierarchical Partial Reconfiguration”, FPT 2022

Mono.cppA.cpp

HLS,

Logic synthesis

B.cpp C.cpp D.cpp

Page Assignment

Place/

Route/

Bit-gen

<<
HLS → Bitstream:

2~5 min
HLS → Bitstream:

7~22 min

Idea – More Flexibility using Hierarchical PR

• Idea: Flexible-sized PR pages using Hierarchical PR[3]

3
7

[3] Park et al., “Fast and Flexible FPGA Development using Hierarchical Partial Reconfiguration”, FPT 2022

Mono.cppA.cpp

HLS,

Logic synthesis

B.cpp C’.cpp D.cpp

Page Assignment

Place/

Route/

Bit-gen

HLS → Bitstream:

~2min

Idea – More Flexibility using Hierarchical PR

• Idea: Flexible-sized PR pages using Hierarchical PR[3]

• Advantages

– Fine-grained separate compilations with single pages
➔ maximize benefits of fast separate compilations

– Users are not forced to decompose a design into small
operators. They can use double pages or quad pages.
➔ flexible framework

– Useful in incremental refinement
➔ Users can quickly start from natural decomposition

and incrementally refine just like SW!

3
8

[3] Park et al., “Fast and Flexible FPGA Development using Hierarchical Partial Reconfiguration”, FPT 2022

Idea – More Flexibility using Hierarchical PR

• Results – detailed results in [3]

– Improves application performance by 1.4~4.9x compared to a fixed-
sized pages system on Rosetta HLS benchmarks[4]

• Remove NoC bandwidth by merging ops

• Use more area for single operator

3
9

<Remove NoC bandwidth bottleneck by merging ops>

[3] Park et al., “Fast and Flexible FPGA Development using Hierarchical Partial Reconfiguration”, FPT 2022
[4] Zhou et al., “Rosetta: A realistic high-level synthesis benchmark suite for software programmable FPGAs”, FPGA 2018

Idea – More Flexibility using Hierarchical PR

• Results – detailed results in [3]

– Improves application performance by 1.4~4.9x compared to a fixed-
sized pages system on Rosetta HLS benchmarks[4]

• Remove NoC bandwidth by merging ops

• Use more area for single operator

4
0

<Use Double/Quad page for a single operator>

[3] Park et al., “Fast and Flexible FPGA Development using Hierarchical Partial Reconfiguration”, FPT 2022
[4] Zhou et al., “Rosetta: A realistic high-level synthesis benchmark suite for software programmable FPGAs”, FPGA 2018

Idea – More Flexibility using Hierarchical PR

• Results – detailed results in [3]

– Improves application performance by 1.4~4.9x compared to a fixed-
sized pages system on Rosetta HLS benchmarks[4]

• Remove NoC bandwidth by merging ops

• Use more area for single operator

– While compiling 2.2~5.3x faster than AMD-Xilinx Vitis

• In incremental refinement scenario, a single page takes
less than 2 minutes to compile (HLS → partial bitstream)

4
1

[3] Park et al., “Fast and Flexible FPGA Development using Hierarchical Partial Reconfiguration”, FPT 2022
[4] Zhou et al., “Rosetta: A realistic high-level synthesis benchmark suite for software programmable FPGAs”, FPGA 2018

Idea – More Flexibility using Hierarchical PR

• More enhancements on the separate compilation framework[5]

– Mitigate NoC bandwidth bottleneck

• Use multiple NoC interfaces

4
2

[5] Park et al., “REFINE: Runtime Execution Feedback for INcremental Evolution on FPGA Designs”, FPGA 2024

Idea – More Flexibility using Hierarchical PR

• More enhancements on the separate compilation framework[5]

– Mitigate NoC bandwidth bottleneck

• Use multiple NoC interfaces

– Support for multiple clock frequencies for each op

• NoC runs @ 400MHz

• Operators run @ 200~400MHz

4
3

[5] Park et al., “REFINE: Runtime Execution Feedback for INcremental Evolution on FPGA Designs”, FPGA 2024

@400MHz@250MHz

@350MHz
@400MHz

Idea – More Flexibility using Hierarchical PR

• More enhancements on the separate compilation framework[5]

– Mitigate NoC bandwidth bottleneck

• Use multiple NoC interfaces

– Support for multiple clock frequencies for each op

• NoC runs @ 400MHz

• Operators run @ 200~400MHz

– Page assignment based on recursive graph bipartitioning

• Reduce traffic over NoC

4
4

[5] Park et al., “REFINE: Runtime Execution Feedback for INcremental Evolution on FPGA Designs”, FPGA 2024

Idea – More Flexibility using Hierarchical PR

• More enhancements on the separate compilation framework[5]

– Mitigate NoC bandwidth bottleneck

• Use multiple NoC interfaces

– Support for multiple clock frequencies for each op

• NoC runs @ 400MHz

• Operators run @ 200~400MHz

– Page assignment based on recursive graph bipartitioning

• Reduce traffic over NoC

4
5

[5] Park et al., “REFINE: Runtime Execution Feedback for INcremental Evolution on FPGA Designs”, FPGA 2024

Idea – More Flexibility using Hierarchical PR

• More enhancements on the separate compilation framework[5]

– Mitigate NoC bandwidth bottleneck

• Use multiple NoC interfaces

– Support for multiple clock frequencies for each op

• NoC runs @ 400MHz

• Operators run @ 200~400MHz

– Page assignment based on recursive graph bipartitioning

• Reduce traffic over NoC

– More enhancements in [5]

4
6

[5] Park et al., “REFINE: Runtime Execution Feedback for INcremental Evolution on FPGA Designs”, FPGA 2024

Table of Contents

• Motivation

• Idea – Separate compilation in Parallel using Partial Reconfiguration

• Idea – More Flexibility using Hierarchical PR

• Idea – Incremental Refinement Strategy and Profiling

• Discussion & Conclusion

4
7

Idea – Incremental Refinement Strategy and Profiling

• Remember, the goal: “SW-like FPGA design development”

– Fast Separate Compilation in Parallel using
NoC + (Hierarchical) Partial Reconfiguration

– Incremental Refinement strategy

– Profiling using FIFO counters

4
8

Idea – Incremental Refinement Strategy and Profiling

• Remember, the goal: “SW-like FPGA design development”

– Fast Separate Compilation in Parallel using
NoC + (Hierarchical) Partial Reconfiguration

– Incremental Refinement strategy

– Profiling using FIFO counters

• Problem: Is the previous NoC+PR system enough for the
incremental refinement on FPGA designs?

4
9

Idea – Incremental Refinement Strategy and Profiling

• Problem: Is the previous NoC+PR system enough for the
incremental refinement on FPGA designs?

– NoC-based system

• Pro: Faster compile

– Parallel, incremental

• Con: NoC overhead

– Area, Bandwidth

– Monolithic system

• Pro: No NoC overhead

• Con: Slow compile

5
0

Idea – Incremental Refinement Strategy and Profiling

• Idea: Fast incremental refinement strategy[5]

– Start with the NoC-based system

– Identify the bottleneck and select the next design point

– When a design can’t be improved in the NoC-based system,
(e.g. not enough area in PR page, design space is all explored)
migrate to the monolithic system

– Continue to identify the bottleneck and select the next design point

5
1

[5] Park et al., “REFINE: Runtime Execution Feedback for INcremental Evolution on FPGA Designs”, FPGA 2024

Fast compile with NoC + PR NoC is removed!

Idea – Incremental Refinement Strategy and Profiling

• Problem: No profiling capability. How to identify a bottleneck of a
design in HW?

• Idea: Bottleneck identification using FIFO counters

– NoC-based system

• Pro: Faster compile

– Parallel, incremental

• Con: NoC overhead

– Area, Bandwidth

– Monolithic system

• Pro: No NoC overhead

• Con: Slow compile

5
2

A NoC

Recall!

Idea – Incremental Refinement Strategy and Profiling

• Idea: Bottleneck identification using FIFO counters

– High-level intuition

5
3

1 32 4

Idea – Incremental Refinement Strategy and Profiling

• Idea: Bottleneck identification using FIFO counters

– High-level intuition

5
4

1 32 4

Op_3 is slower than Op_2

Idea – Incremental Refinement Strategy and Profiling

• Idea: Bottleneck identification using FIFO counters

– High-level intuition

5
5

1 32 4

Op_3 is slower than Op_4

Idea – Incremental Refinement Strategy and Profiling

• Idea: Bottleneck identification using FIFO counters

– High-level intuition

5
6

Doesn’t stall!

Stalls!Stalls!Stalls!

1 32 4

Bottleneck!

Idea – Incremental Refinement Strategy and Profiling

• Idea: Bottleneck identification using FIFO counters[5]

1) bottleneck operator
→ embedded in both NoC system, monolithic system

Stall condition: at least one FIFO stalls, stall cnt++
➔ Op with the least stall cnts may be the bottleneck

5
7

[5] Park et al., “REFINE: Runtime Execution Feedback for INcremental Evolution on FPGA Designs”, FPGA 2024

A

NoC (NoC system) or

Other ops. (Monolithic system)

Input FIFO
stall condition:
empty && ready

Output FIFO
stall condition:
full && valid

Count the stalls!

Idea – Incremental Refinement Strategy and Profiling

• Idea: Bottleneck identification using FIFO counters[5]

1) bottleneck operator
→ embedded in both NoC system, monolithic system

A

NoC (NoC system) or

Other ops. (Monolithic system)

Stall condition: at least one FIFO stalls, stall cnt++
➔ Op with the least stall cnts may be the bottleneck

Input FIFO
stall condition:
empty && ready

Output FIFO
stall condition:
full && valid

Count the stalls!

5
8

NoC

AB

N
o

C
in

te
rfa

c
e

N
o

C
in

te
rfa

c
e

- Harms application performance
- Wrong bottleneck operator can be identified

32b32b

128b 128b

2) NoC bandwidth bottleneck
→ embedded in only NoC system

[5] Park et al., “REFINE: Runtime Execution Feedback for INcremental Evolution on FPGA Designs”, FPGA 2024

Idea – Incremental Refinement Strategy and Profiling

• Idea: Bottleneck identification using FIFO counters[5]

1) bottleneck operator
→ embedded in both NoC system, monolithic system

A

NoC (NoC system) or

Other ops. (Monolithic system)

Stall condition: at least one FIFO stalls, stall cnt++
➔ Op with the least stall cnts may be the bottleneck

Input FIFO
stall condition:
empty && ready

Output FIFO
stall condition:
full && valid

Count the stalls!

5
9

NoC

AB

N
o

C
in

te
rfa

c
e

N
o

C
in

te
rfa

c
e

32b32b

128b 128b

2) NoC bandwidth bottleneck
→ embedded in only NoC system

If A’s Output FIFO’s full↑ && B’s Input FIFO’s full↓
➔ NoC bandwidth may be the bottleneck

[5] Park et al., “REFINE: Runtime Execution Feedback for INcremental Evolution on FPGA Designs”, FPGA 2024

Idea – Incremental Refinement Strategy and Profiling

• Results: Design Space Exploration (DSE) case study

– Observe application performance improvement
with bottleneck identification

– Compare design tuning time of
our fast incremental refinement strategy vs monolithic-only flow

6
0

Idea – Incremental Refinement Strategy and Profiling

• Results: Design Space Exploration (DSE) case study

6
1

e.g.: unroll factor,
Initiation Interval,
etc

<Automated DSE experiment overview>
Orange: NoC
Cyan: pipeline regs (placed near PR pages)

- AMD Vitis, Vitis HLS, Vivado, 2022.1
- AMD Ryzen 5950X, 16 core, 32 threads
- 128 GB RAM
- AMD ZCU102, UltraScale+ ZU9EG

<NoC-based system overlay>

30K

30K 30K

30K

30K

15K

Idea – Incremental Refinement Strategy and Profiling

• Results: Design Space Exploration (DSE) case study

6
2

e.g.: unroll factor,
Initiation Interval,
etc

<Automated DSE experiment overview>
Orange: NoC
Cyan: pipeline regs (placed near PR pages)

- AMD Vitis, Vitis HLS, Vivado, 2022.1
- AMD Ryzen 5950X, 16 core, 32 threads
- 128 GB RAM
- AMD ZCU102, UltraScale+ ZU9EG

<NoC-based system overlay>

30K

30K 30K

30K

30K

15K

15K

15K

15K

15K

15K

15K

15K

15K

15K

15K

Idea – Incremental Refinement Strategy and Profiling

• Results: Design Space Exploration (DSE) case study

6
3

e.g.: unroll factor,
Initiation Interval,
etc

<Automated DSE experiment overview>
Orange: NoC
Cyan: pipeline regs (placed near PR pages)

- AMD Vitis, Vitis HLS, Vivado, 2022.1
- AMD Ryzen 5950X, 16 core, 32 threads
- 128 GB RAM
- AMD ZCU102, UltraScale+ ZU9EG

<NoC-based system overlay>

30K

30K 30K

30K

30K

15K

15K

15K

15K

15K

15K

15K

15K

15K

15K

15K

8K

8K

8K

8K

8K

8K

8K

8K

8K

8K

8K

8K

8K

8K

8K

8K

8K

8K

8K8K

• Results: Design Space Exploration (DSE) case study

L_3_1 L_2_0

L_2_1 L_3_0 L_1_1

L_4_1 L_4_0 L_1_0

L_5_1 L_5_0 L_0_1

PS

L_last
_1

L_last
_2

L_last_0

L_0_0

PE=8 → PE=16

Example: CNN-2 benchmark

N
o

C

<NoC-based system>

Idea – Incremental Refinement Strategy and Profiling

6
4

• Results: Design Space Exploration (DSE) case study

L_3_1 L_2_0

L_2_1 L_3_0 L_1_1

L_4_1 L_4_0 L_1_0

L_5_1 L_5_0 L_0_1

PS

L_last
_1

L_last
_2

L_last_0

L_0_0 200MHz → 250MHz

Example: CNN-2 benchmark

N
o

C

<NoC-based system>

Idea – Incremental Refinement Strategy and Profiling

6
5

• Results: Design Space Exploration (DSE) case study

L_3_1 L_2_0

L_2_1 L_3_0 L_1_1

L_4_1 L_4_0 L_1_0

L_5_1 L_5_0 L_0_1

PS

L_last
_1

L_last
_2

L_last_0

L_0_0

PE=1 → PE=2

N
o

C

<NoC-based system>

Idea – Incremental Refinement Strategy and Profiling

6
6

Example: CNN-2 benchmark

• Results: Design Space Exploration (DSE) case study

L_3_1 L_2_0

L_2_1 L_3_0 L_1_1

L_4_1 L_4_0 L_1_0

L_5_1 L_5_0 L_0_1

PS

L_last
_1

L_last
_2

L_last_0

L_0_0

PE=1 → PE=2

N
o

C

<NoC-based system>

And so on…

Idea – Incremental Refinement Strategy and Profiling

6
7

Example: CNN-2 benchmark

L_last_1 L_2_0 L_3_0

L_last_0 L_5_1 L_1_1

L_5_0 L_2_1

L_4_1 L_4_0 L_3_1

PS

L_0_1

L_0_0

L_last_2

• Results: Design Space Exploration (DSE) case study

Already reached the final design point

➔Migrate to monolithic flow

N
o

C

<NoC-based system>

Idea – Incremental Refinement Strategy and Profiling

6
8

Example: CNN-2 benchmark

• Results: Design Space Exploration (DSE) case study

PS

• Wanted to show that 14 operators are monolithically
compiled (slow)

• NoC is removed
• Continues to identify the bottleneck and refine until the

design space is all explored

<Monolithic system – Just an illustration…>

Idea – Incremental Refinement Strategy and Profiling

6
9

Example: CNN-2 benchmark

Idea – Incremental Refinement Strategy and Profiling

7
0

Rendering†

Tuning time, 2.5×

App latency, 3.8×

NoC-based
2~3 min each

Mono

NoC → Monolithic
Only Monolithic

Design Space Exploration time (seconds)

B
e

st
 K

er
n

el
 L

at
en

cy
 (

m
s)

Monolithic system NoC-based system

2.2 hours 5.3 hours

• Reduce tuning time by 1.3~2.7× while
improving application latency by 2.2~12.7×

<Selected DSE results: Our incr. refinement strategy vs Monolithic only>[5]

Idea – Incremental Refinement Strategy and Profiling

7
1

[5] Park et al., “REFINE: Runtime Execution Feedback for INcremental Evolution on FPGA Designs”, FPGA 2024

Idea – Incremental Refinement Strategy and Profiling

7
2

• Advantages

– Just like SW, we can quickly map the application on the FPGA, profile
to find the bottleneck, and recompile only the functions that have
changed

– Faster tuning time is expected because initial design points are
iterated with the fast separate compilation (2~3 min in some cases)

– No loss in the performance for the final design

Table of Contents

• Motivation

• Idea – Separate compilation in Parallel using Partial Reconfiguration

• Idea – More Flexibility using Hierarchical PR

• Idea – Incremental Refinement Strategy and Profiling

• Discussion & Conclusion

7
3

Discussion & Conclusion

7
4

• How is it related to FPGAs with hard NoC(e.g. AMD Versal)?

– Can create similar hard NoC + PR pages platform

• Limited NoC ports? Soft switch logic, Hierarchical PR pages

– Can instantiate similar FIFO counter logic in NoC interfaces

– Don’t need to migrate to monolithic system

[6] I. Swarbrick et al., “Network-on-Chip Programmable Platform in Versal ACAP Architecture”, FPGA 2019

<Example Versal Floorplan[6]>

Discussion & Conclusion

7
5

• How is it related to RapidWright from AMD Research?
– RapidWright is an open source framework that enables netlist and

implementation manipulation

– Fast FPGA compilation work with RapidWright: [7,8,9]

– PR is top-down, using a pre-routed overlay

• Pro: don’t need global stitching

• Con: Requires NoC, NoC BW could be bottleneck

– [11] doesn’t use NoC but still uses PR. (switchbox PR pages)

– RapidWright, bottom-up, going through the global stitching

• Pro: don’t need NoC

• Con: Requires global stitching

– Fast routing challenge!

[7] Thomas et al., “Software-like Compilation for Data Center FPGA Accelerators”, HEART 2021
[8] Guo et al., “RapidStream: Parallel Physical Implementation of FPGA HLS Designs”, FPGA 2022
[9] Nguyen et al., “SPADES: A Productive Design Flow for Versal Programmable Logic”, FPL 2023
[11] Xiao et al., “Fast linking of separately-compiled FPGA blocks without a NoC”, FPT 2020

Discussion & Conclusion

7
6

• Soft NoC consumes FPGA resources

– For all traffic patterns, is the current BFT NoC the best?

• Some exploration for highly unbalanced traffic in [10]

• Conclusion

– SW-like Incremental Refinement FPGA development

• Fast Separate Compilation in Parallel using
NoC + (Hierarchical) Partial Reconfiguration

• Incremental Refinement strategy

• Profiling using FIFO counters

[10] Park et al., “Asymmetry in Butterfly Fat Tree FPGA NoC”, FPT 2023

Thank you ☺

• Q. Doesn’t Vivado support Out-of-Context flow? Without PR?

– In synthesis, does save compile time.

• HLS/Synthesize A.cpp, B.cpp, C.cpp, D.cpp

• Then, stitch *.dcp ➔ Top-level stitching isn’t time-consuming

– In implementation, does NOT save compile time.

7
7

A.cpp B.cpp C.cpp D.cpp

Separate HLS/Synthesis/Place/Route

Vendor tool (Vivado) imports separately

placed/routed DCP files and runs another

top-level place/route

<Hierarchical Design Tutorial, ug946>

Appendix

7
8

• Q. Why do you need a NoC? Why not just PR pages?

– Then, the static logic is application-specific
➔ Need a new static logic for each application?

<NoC + PR pages>

A CB D

B D

A C

A
C

B
D

?

<No NoC, only PR pages>

Appendix

7
9

A
C

B
D EA

C

B
D

?

• Q. Why do you need a NoC? Why not just PR pages?

– Then, the static logic is application-specific
➔ Need a new static logic for each application?
➔ Can’t add new operator. Interconnection between operators can’t

change

<No NoC, only PR pages>

B D

A C
<NoC + PR pages>

Appendix

8
0

• Q. Why do you need a NoC? Why not just PR pages?

– Then, the static logic is application-specific
➔ Need a new static logic for each application?
➔ Can’t add new operator. Interconnection between operators can’t

change

– If you are fixed with interconnections of operators, then possible![10]

– Or with switchbox PR pages[11], possible! ➔ More wires

[10] Xiao et al., “HiPR: High-level partial reconfiguration for fast incremental FPGA compilation”, FPL 2022
[11] Xiao et al., “Fast linking of separately-compiled FPGA blocks without a NoC”, FPT 2020

<SW PR pages + Logic PR pages>[11]<No NoC, only PR pages>[10]

B D

A C

<NoC + PR pages>

Appendix

Appendix

• Q. Some limitations on Vivado PR technology?

– Abstract shell, not perfect

• In [3], size of static design of abstract shell(quad page):
129 LUTs~15508 LUTs ➔ Had some workaround in [3]

• Note: size of quad page is about 30K LUTs

8
1

[3] Park et al., “Fast and Flexible FPGA Development using Hierarchical Partial Reconfiguration”, FPT 2022
[5] Park et al., “REFINE: Runtime Execution Feedback for INcremental Evolution on FPGA Designs”, FPGA 2024

Appendix

• Q. Some limitations on Vivado PR technology?

– Abstract shell, not perfect

• In [3], size of static design of abstract shell(quad page):
129 LUTs~15508 LUTs ➔ Had some workaround in [3]

• Note: size of quad page is about 30K LUTs

– Static routing over reconfigurable regions

• Addressed in [5]

– Reconfigurable module relocation?

• Note that in page assignment, if it needs to be moved to a
different single-sized page, it needs to be newly placed/routed.
➔ Partial bitstreams can’t be simply relocated

8
2

[3] Park et al., “Fast and Flexible FPGA Development using Hierarchical Partial Reconfiguration”, FPT 2022
[5] Park et al., “REFINE: Runtime Execution Feedback for INcremental Evolution on FPGA Designs”, FPGA 2024

Appendix

• Q. Some limitations on Vivado PR technology?

– Abstract shell, not perfect

• In [3], size of static design of abstract shell(quad page):
129 LUTs~15508 LUTs ➔ Had some workaround in [3]

• Note: size of quad page is about 30K LUTs

– Static routing over reconfigurable regions

• Addressed in [5]

– Reconfigurable module relocation?

• Note that in page assignment, if it needs to be moved to a
different single-sized page, it needs to be newly placed/routed.
➔ Partial bitstreams can’t be simply relocated

8
3

[3] Park et al., “Fast and Flexible FPGA Development using Hierarchical Partial Reconfiguration”, FPT 2022
[5] Park et al., “REFINE: Runtime Execution Feedback for INcremental Evolution on FPGA Designs”, FPGA 2024

• In Vivado PR, static net can route over reconfigurable regions
• static reconfigurable: interface nets
• static static: can be prevented ➔ CONTAIN_ROUTING ON

Static routing, PROrange: NoC, Cyan: Pipeline regs

Appendix

• Q. How to determine whether a synthesized netlist
fits in a PR page or not?
– Irregular columnar resource distribution of FPGAs

– AMD PR technology allows static routing to route
over PR pages

– Every design (netlist) has different routing
complexity

• E.g. 60% LUT util could fail in some designs
while even 80% LUT util doesn’t fail in some
designs

• Our solution
– Per each PR page, train a classifier that predicts

whether a netlist can be successfully mapped
or not

– Train input: a variety of designs with different
resource util, Rent complexity, etc

– Features: post-synthesis resource estimates, Rent
value, average fanout, total instances

A.cpp B.cpp C.cpp D.cpp

Page Assignment

8
4

Appendix

• Q. How difficult is the designs decomposition?

– For some designs, intuitive

– For some designs, more challenging

– Some of our benchmarks are from Rosetta HLS benchmark[3] that
are not necessarily in dataflow form

L_0_0 L_0_1 L_1_0 L_1_1

L_2_0 L_2_1 L_3_0 L_3_1

L_4_0 L_4_1 L_5_0 L_5_1

L_last_0 L_last_1 L_last_2

[3] Zhou et al., “Rosetta: A realistic high-level synthesis benchmark suite for software programmable FPGAs”, FPGA 2018

8
5

Appendix

• Q. Final design point of our incremental strategy vs monolithic-
only flow?

– In our experiments, they reach to the similar final design points

– But

• sometimes the final design point of the NoC flow doesn't meet
the timing in the monolithic flow

• sometimes NoC flow fails earlier than the monolithic-only flow

• sometime monolithic-only flow fails earlier than the NoC flow

• Different implementation directives?

8
6

	Slide 1: Software-like Incremental Refinement on FPGA using Partial Reconfiguration
	Slide 2: Table of Contents
	Slide 3: Table of Contents
	Slide 4: Motivation
	Slide 5: Motivation
	Slide 6: Motivation
	Slide 7: Motivation
	Slide 8: Motivation
	Slide 9: Motivation
	Slide 10: Motivation
	Slide 11: Motivation
	Slide 12: Motivation
	Slide 13: Motivation
	Slide 14: Motivation
	Slide 15: Motivation
	Slide 16: Motivation
	Slide 17: Motivation
	Slide 18: Motivation
	Slide 19: Table of Contents
	Slide 20: Idea – Separate compilation in Parallel using Partial Reconfiguration
	Slide 21: Idea – Separate compilation in Parallel using Partial Reconfiguration
	Slide 22: Idea – Separate compilation in Parallel using Partial Reconfiguration
	Slide 23: Idea – Separate compilation in Parallel using Partial Reconfiguration
	Slide 24: Idea – Separate compilation in Parallel using Partial Reconfiguration
	Slide 25: Idea – Separate compilation in Parallel using Partial Reconfiguration
	Slide 26: Idea – Separate compilation in Parallel using Partial Reconfiguration
	Slide 27: Idea – Separate compilation in Parallel using Partial Reconfiguration
	Slide 28: Idea – Separate compilation in Parallel using Partial Reconfiguration
	Slide 29: Table of Contents
	Slide 30: Idea – More Flexibility using Hierarchical PR
	Slide 31: Idea – More Flexibility using Hierarchical PR
	Slide 32: Idea – More Flexibility using Hierarchical PR
	Slide 33: Idea – More Flexibility using Hierarchical PR
	Slide 34: Idea – More Flexibility using Hierarchical PR
	Slide 35: Idea – More Flexibility using Hierarchical PR
	Slide 36: Idea – More Flexibility using Hierarchical PR
	Slide 37: Idea – More Flexibility using Hierarchical PR
	Slide 38: Idea – More Flexibility using Hierarchical PR
	Slide 39: Idea – More Flexibility using Hierarchical PR
	Slide 40: Idea – More Flexibility using Hierarchical PR
	Slide 41: Idea – More Flexibility using Hierarchical PR
	Slide 42: Idea – More Flexibility using Hierarchical PR
	Slide 43: Idea – More Flexibility using Hierarchical PR
	Slide 44: Idea – More Flexibility using Hierarchical PR
	Slide 45: Idea – More Flexibility using Hierarchical PR
	Slide 46: Idea – More Flexibility using Hierarchical PR
	Slide 47: Table of Contents
	Slide 48: Idea – Incremental Refinement Strategy and Profiling
	Slide 49: Idea – Incremental Refinement Strategy and Profiling
	Slide 50: Idea – Incremental Refinement Strategy and Profiling
	Slide 51: Idea – Incremental Refinement Strategy and Profiling
	Slide 52: Idea – Incremental Refinement Strategy and Profiling
	Slide 53: Idea – Incremental Refinement Strategy and Profiling
	Slide 54: Idea – Incremental Refinement Strategy and Profiling
	Slide 55: Idea – Incremental Refinement Strategy and Profiling
	Slide 56: Idea – Incremental Refinement Strategy and Profiling
	Slide 57: Idea – Incremental Refinement Strategy and Profiling
	Slide 58: Idea – Incremental Refinement Strategy and Profiling
	Slide 59: Idea – Incremental Refinement Strategy and Profiling
	Slide 60: Idea – Incremental Refinement Strategy and Profiling
	Slide 61: Idea – Incremental Refinement Strategy and Profiling
	Slide 62: Idea – Incremental Refinement Strategy and Profiling
	Slide 63: Idea – Incremental Refinement Strategy and Profiling
	Slide 64: Idea – Incremental Refinement Strategy and Profiling
	Slide 65: Idea – Incremental Refinement Strategy and Profiling
	Slide 66: Idea – Incremental Refinement Strategy and Profiling
	Slide 67: Idea – Incremental Refinement Strategy and Profiling
	Slide 68: Idea – Incremental Refinement Strategy and Profiling
	Slide 69: Idea – Incremental Refinement Strategy and Profiling
	Slide 70: Idea – Incremental Refinement Strategy and Profiling
	Slide 71: Idea – Incremental Refinement Strategy and Profiling
	Slide 72: Idea – Incremental Refinement Strategy and Profiling
	Slide 73: Table of Contents
	Slide 74: Discussion & Conclusion
	Slide 75: Discussion & Conclusion
	Slide 76: Discussion & Conclusion
	Slide 77: Appendix
	Slide 78: Appendix
	Slide 79: Appendix
	Slide 80: Appendix
	Slide 81: Appendix
	Slide 82: Appendix
	Slide 83: Appendix
	Slide 84: Appendix
	Slide 85: Appendix
	Slide 86: Appendix

