Asymmetry in Butterfly Fat Tree FPGA NoC

Dongjoon(DJ) Park, Zhijing Yao, Yuanlong Xiao, André DeHon

Implementation of Computation Group University of Pennsylvania

Story

Problem

Traditional Butterfly Fat Tree (BFT) NoC is symmetric;
 when graph workloads are unbalanced, we can't selectively allocate more bandwidth

Idea

- Asymmetric BFT
- Allocates more bandwidth to specific nodes yet uses similar resources with symmetric BFT
- What Asymmetric BFT will deliver
 - Expands the design space of Soft NoCs; users can tailor the NoC to their applications, fully exploiting FPGA's reconfigurability

Result

Up to 32% improvement in throughput on realistic workloads

- Background
- Motivation
- Idea
- Evaluation
- Conclusion

- Background
- Motivation
- Idea
- Evaluation
- Conclusion

Background

- Network-on-Chip (NoC) on FPGA
 - Hard NoC: embedded NoC on the FPGA
 (e.g. AMD Xilinx Versal, Achronix Speedster7t)
 - Better performance
 - Compact, don't use programmable resources
 - Soft NoC: an overlay NoC built on top of the commercial FPGA
 - More flexibility

<Hard NoC example, AMD Versal>

<Soft NoC example>

Background

- Butterfly Fat Tree (BFT) soft NoC
 - Bandwidth of each level of BFT can be configured by properly selecting t switches and pi switches

- Background
- Motivation
- Idea
- Evaluation
- Conclusion

Motivation

- Problem 1: Realistic workloads are sometimes unbalanced
- Problem 2: Traditional BFT is symmetric
 - Each level is homogeneously composed of either t switches or pi switches
 - When you want to allocate more bandwidth to specific PEs, it requires more resources

<Example of unbalanced workloads^[1] after bi-partitioning>

Motivation

- Problem 1: Realistic workloads are sometimes unbalanced
- Problem 2: Traditional BFT is symmetric
 - Each level is homogeneously composed of either t switches or pi switches
 - When you want to allocate more bandwidth to specific PEs, it requires more resources

<Example of unbalanced workloads^[1] after bi-partitioning>

What we want: selectively allocate more bandwidth to some PEs using similar resources

- Background
- Motivation
- Idea
- Evaluation
- Conclusion

- Asymmetric BFT: different bandwidth with similar resource usage
 - Example Asym BFT
 - Type 1: most dense
 - Type 2: dense
 - Type 3: sparse
 - Converging switch

- Converging switch
 - Matches different bandwidths
 - Build with t switches only? → Traffic congestion
 - Build with t switches and t-random switches
 - When downward, packet is directed lower left one cycle, and lower right another cycle

- Converging switch
 - Matches different bandwidths
 - Build with t switches only? → Traffic congestion
 - Build with t switches and t-random switches
 - When downward, packet is directed lower left one cycle, and lower right another cycle

- Converging switch
 - Matches different bandwidths
 - Build with t switches only? → Traffic congestion
 - Build with t switches and t-random switches
 - When downward, packet is directed lower left one cycle, and lower right another cycle

- Converging switch
 - Matches different bandwidths
 - Build with t switches only? → Traffic congestion
 - Build with t switches and t-random switches
 - When downward, packet is directed lower left one cycle, and lower right another cycle

- Converging switch
 - Matches different bandwidths
 - Build with t switches only? → Traffic congestion
 - Build with t switches and t-random switches
 - When downward, packet is directed lower left one cycle, and lower right another cycle

- Converging switch
 - Matches different bandwidths
 - Build with t switches only? → Traffic congestion
 - Build with t switches and t-random switches
 - When downward, packet is directed lower left one cycle, and lower right another cycle

- Background
- Motivation
- Idea
- Evaluation
- Conclusion

Evaluation

- Simulation with iverilog
- Symmetric BFT vs Asymmetric BFT
 - Realistic graph workloads
 - Synthetic traffic patterns (omitted in the presentation)

				π
	BFT-256	LUTs	Asymmetry	Symmetric t t t t
	S0	122778	-	
	S1	143870	-	
	AS0	142896	Dense, dense, sparse, sparse	
	AS1	143029	Most dense, normal, sparse, sparse	Asymmetric A Asymmetric
•	Resource usage: AMD Vivado 2022 2			

Resource usage: AIVID VIVado 2022.2

Evaluation

- Realistic graph workloads^[1]
 - For balanced workloads: symmetric BFTs are better
 - For unbalanced workloads: asymmetric BFTs are better

- Background
- Motivation
- Idea
- Evaluation
- Conclusion

Conclusion

- When the traffic is unbalanced, asymmetric BFT achieves up to 32%(realistic) and 76%(synthetic) more throughput than traditional symmetric BFT
 - Provides more options to the users with the similar resource usage
 - Advantage of soft NoC on top of reconfigurable fabric is that users can customize the NoC to the applications

