
HiPR: High-level Partial Reconfiguration for

Fast Incremental FPGA Compilation

Implementation of Computation Group

University of Pennsylvania

August 29th, 2022

Yuanlong Xiao, Aditya Hota, Dongjoon(DJ) Park, and André DeHon

<ylxiao, ahota, dopark>@seas.upenn.edu, andre@ieee.org

Have you ever had this problem:

You just spent 2 hours compiling your FPGA design

…and you discover a small change you need to make in one function

(e.g. buffer size, sign error)

Now, you must wait another 2 hours

before you use/test the modified design?

Story

● Problem

❑ More developers use High-Level-Synthesis (C/C++) and expect fast incremental compile...

but FPGA compilation is slow!

❑ Partial Reconfiguration (PR) can be useful in fast incremental development,

but it requires hardware expertise (PR tool flow, floorplanning PR regions)

Story

A B

C D

B’

C’ D

<Incremental development using PR>

A

Smaller problem size than
compiling the entire design!

● Problem

❑ More developers use High-Level-Synthesis (C/C++) and expect fast incremental compile...

but FPGA compilation is slow!

❑ Partial Reconfiguration (PR) can be useful in fast incremental development,

but it requires hardware expertise (PR tool flow, floorplanning PR regions)

● Idea - HiPR

❑ Creates an application-customized static design to support

fast, PR-based, incremental development

● What HiPR will deliver

❑ Enables PR-functions to be defined at C-level and floorplans PR regions for HLS users

❑ Automates fast, PR-based, incremental compile (compatible with Xilinx Vitis)

❑ Decreases incremental compile from hours to 7-20 minutes without performance loss

Story

● Motivation ● Approach ● Floorplan ● Evaluation ● Conclusion

Outline

5

● Motivation

● Approach

● Floorplan

● Evaluation

● Conclusion

● Motivation ● Approach ● Floorplan ● Evaluation ● Conclusion 6

Outline

● Motivation

● Approach

● Floorplan

● Evaluation

● Conclusion

● Motivation ● Approach ● Floorplan ● Evaluation ● Conclusion 7

Motivation: Initial-compile & Incremental-compile by Vitis

● Slow FPGA Compilation with Vitis

❑ It takes 65-109 min for initial-compilation

<Benchmark[1] Compile Time Breakdowns

with Vitis (on Xilinx Alveo U50)>

[1] Yuan Zhou et al. Rosetta: A Realistic High-Level Synthesis Benchmark Suite for Software-Programmable FPGAs. ISFPGA’18

● Motivation ● Approach ● Floorplan ● Evaluation ● Conclusion 8

Motivation: Initial-compile & Incremental-compile by Vitis

● Slow FPGA Compilation with Vitis

❑ It takes 65-109 min for initial-compilation

❑ With only a small change in source file, incremental compilation time

is still long (48-82 min)

❑ Place/Route/Bit-gen is still long!

<Benchmark[1] Compile Time Breakdowns

with Vitis (on Xilinx Alveo U50)>

[1] Yuan Zhou et al. Rosetta: A Realistic High-Level Synthesis Benchmark Suite for Software-Programmable FPGAs. ISFPGA’18

● Motivation ● Approach ● Floorplan ● Evaluation ● Conclusion 9

Motivation: Initial-compile & Incremental-compile by Vitis

● Slow FPGA Compilation with Vitis

❑ It takes 65-109 min for initial-compilation

❑ With only a small change in source file, incremental compilation time

is still long (48-82 min)

❑ Place/Route/Bit-gen is still long!

● Can we

❑ Decrease the incremental compile to less than 20 minutes with PR?

❑ Enable HLS developers to use PR techniques at C-level?

<Benchmark[1] Compile Time Breakdowns

with Vitis (on Xilinx Alveo U50)>

[1] Yuan Zhou et al. Rosetta: A Realistic High-Level Synthesis Benchmark Suite for Software-Programmable FPGAs. ISFPGA’18

● Motivation ● Approach ● Floorplan ● Evaluation ● Conclusion 10

Outline

● Motivation

● Approach

● Floorplan

● Evaluation

● Conclusion

● Motivation ● Approach ● Floorplan ● Evaluation ● Conclusion

b

c

d

top

ea

OpenCL Host

11

HiPR (High-level Partial Reconfiguration): Compute Model

● Prepare an application based on latency insensitive

computing model[17] (e.g.: operators: a, b, c, d, e)

[17] G. Kahn, “The semantics of a simple language for parallel programming,” in Proceedings of the IFIP CONGRESS 74. North-Holland Publishing Company, 1974, pp. 471–475.

module b
valid

din
ready

valid

dout
ready

void top(hls::stream< ap_uint<32> > & Input_1,

 hls::stream< ap_uint<32> > a2b

#pragma HLS STREAM variable=a2b

 hls::stream< ap_uint<32> > & Output_1) {

#pragma HLS STREAM variable=d2e

 b(a2b, b2d);

 hls::stream< ap_uint<32> > d2e;

 c(a2c, c2d);

 d(b2d, c2d, d2e);

 … /* stream link definitions */

1

2

3

4

5

6

7

8

9

10

11

12

13

 a(Input_1, a2b, a2c);

 e(d2e, Output_1);

}14

 /* dataflow graph decription */

15

void b(hls::stream< ap_uint<32> > & Input_1,

 hls::stream< ap_uint<32> > & Output_1) {

#pragma HLS INTERFACE axis register port=Output_1

 for(int r=0; r<MAX_NUM; r++) {

#pragma HLS INTERFACE axis register port=Input_1

 tmp_in(31, 0)=Input_1.read();

 ap_fixed<96, 56> t1 = (ap_fixed<96,56>) tmp_in;

 tmp_in(31, 0)=Input_1.read();

 ap_fixed<96, 56> t2 = (ap_fixed<96,56>) tmp_in;

 ap_fixed<48, 27> buf[2];

 ap_fixed <32, 13> tmp_in, tmp_out;

 … /* computation */

 tmp_out = (ap_fixed<32, 13>) (buf[0] + buf[1]);

 Output_1.write(tmp_out(31, 0));

}}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

b.cpp file

● Motivation ● Approach ● Floorplan ● Evaluation ● Conclusion 12

HiPR (High-level Partial Reconfiguration): Compute Model

b

c

d

top

ea

OpenCL Host

void b(hls::stream< ap_uint<32> > & Input_1,

 hls::stream< ap_uint<32> > & Output_1) {

#pragma HLS PR clb=4 bram=2.4 dsp=8

1

2

3

b.hpp file

- HLS PR: operator b is reconfigurable

- clb=4, bram=2.4, dsp=8: the PR region should have

4 times more CLB than what operator b needs now

● Prepare an application based on latency insensitive

computing model[17] (e.g.: operators: a, b, c, d, e)

● Define PR-functions at C-level with pragmas

[17] G. Kahn, “The semantics of a simple language for parallel programming,” in Proceedings of the IFIP CONGRESS 74. North-Holland Publishing Company, 1974, pp. 471–475.

HBM HBM

cl
k

 r
eg

io
n

 h
ei

g
h

t

● Motivation ● Approach ● Floorplan ● Evaluation ● Conclusion 13

HiPR (High-level Partial Reconfiguration): Compute Model

b

c

d

top

ea

OpenCL Host

void b(hls::stream< ap_uint<32> > & Input_1,

 hls::stream< ap_uint<32> > & Output_1) {

#pragma HLS PR clb=4 bram=2.4 dsp=8

1

2

3

b.hpp file

- HLS PR: operator b is reconfigurable

- clb=4, bram=2.4, dsp=8: the PR region should have

4 times more CLB than what operator b needs now

● Prepare an application based on latency insensitive

computing model[17] (e.g.: operators: a, b, c, d, e)

● Define PR-functions at C-level with pragmas

● What if the revised function is larger?

(e.g. Increase buffer size, increase parallelism)

➔ Reserve more resources for future tuning

[17] G. Kahn, “The semantics of a simple language for parallel programming,” in Proceedings of the IFIP CONGRESS 74. North-Holland Publishing Company, 1974, pp. 471–475.

HBM HBM

cl
k

 r
eg

io
n

 h
ei

g
h

t

● Motivation ● Approach ● Floorplan ● Evaluation ● Conclusion 14

HiPR Toolflow: Initial-Compile

● Synthesize each operator in parallel

HBM HBM

cl
k
 r

eg
io

n
 h

ei
g
h
t

● Motivation ● Approach ● Floorplan ● Evaluation ● Conclusion 15

HiPR Toolflow: Initial-Compile

● Synthesize each operator in parallel

● Floorplan the PR regions based on PR pragma and connectivity

HBM HBM

cl
k
 r

eg
io

n
 h

ei
g
h
t

● Motivation ● Approach ● Floorplan ● Evaluation ● Conclusion 16

HiPR Toolflow: Initial-Compile

● Synthesize each operator in parallel

● Floorplan the PR regions based on PR pragma and connectivity

● Place/Route to generate a fully routed design with placeholders

HBM HBM

cl
k
 r

eg
io

n
 h

ei
g
h
t

● Motivation ● Approach ● Floorplan ● Evaluation ● Conclusion

HBM HBM

c
lk

 r
e
g
io

n
 h

e
ig

h
t

HBM HBM

c
lk

 r
e
g
io

n
 h

e
ig

h
t

HBM HBM

c
lk

 r
e
g
io

n
 h

e
ig

h
t

HBM HBM

c
lk

 r
e
g
io

n
 h

e
ig

h
t

17

HiPR Toolflow: Initial-Compile

● Synthesize each operator in parallel

● Floorplan the PR regions based on PR pragma and connectivity

● Place/Route to generate a fully routed design with placeholders

● Generate a separate abstract shell[22] for each PR region Abstract shell: minimal logical and
physical database for a PR region

[22] UG909: Vivado Design Suite User Guide: Dynamic Function eXchange, Xilinx, Inc., 2100 Logic Drive, San Jose, CA 95124, June 2021.

● Motivation ● Approach ● Floorplan ● Evaluation ● Conclusion

HBM HBM

c
lk

 r
e
g
io

n
 h

e
ig

h
t

HBM HBM

c
lk

 r
e
g
io

n
 h

e
ig

h
t

HBM HBM

c
lk

 r
e
g
io

n
 h

e
ig

h
t

HBM HBM

c
lk

 r
e
g
io

n
 h

e
ig

h
t

18

HiPR Toolflow: Initial-Compile

● Synthesize each operator in parallel

● Floorplan the PR regions based on PR pragma and connectivity

● Place/Route to generate a fully routed design with placeholders

● Generate a separate abstract shell[22] for each PR region

● Place/Route/Bit-gen each operator separately in parallel
Abstract shell: minimal logical and
physical database for a PR region

[22] UG909: Vivado Design Suite User Guide: Dynamic Function eXchange, Xilinx, Inc., 2100 Logic Drive, San Jose, CA 95124, June 2021.

● Motivation ● Approach ● Floorplan ● Evaluation ● Conclusion

HBM HBM

c
lk

 r
e
g
io

n
 h

e
ig

h
t

HBM HBM

c
lk

 r
e
g
io

n
 h

e
ig

h
t

HBM HBM

c
lk

 r
e
g
io

n
 h

e
ig

h
t

HBM HBM

c
lk

 r
e
g
io

n
 h

e
ig

h
t

19

HiPR Toolflow: Incremental-Compile

● Re-compile only the modified function

● Compiles separately in parallel

• Smaller problem size ➔ faster compilation

• Compilation time is determined by the longest among the parallel compile runs

2000 4000 6000 8000

syn
opt

place
route

hls

bitgen

0

Vitis

a

rd_chk

Time (s)

b

c

d

● Motivation ● Approach ● Floorplan ● Evaluation ● Conclusion 20

Outline

● Motivation

● Approach

● Floorplan

● Evaluation

● Conclusion

● Motivation ● Approach ● Floorplan ● Evaluation ● Conclusion

y axis

x axis
1

2

3

4

5

6

5 10 15

21

Floorplan: Architecture Model

● Architecture model for a device

❑ Resource Vector <CLB, CLB, BRAM,…,CLB>

❑ Forbidden Region <X, Y, W, H> (<10,5,3,1>, …)

● Hierarchical PR[22]

❑ Xilinx Datacenter Platform provides Level-1 PR region

DSP TileBRAM TileCLB Tile

Forbidden

Region

Xilinx

Firmware

Level-1 PR

Region

[22] UG909: Vivado Design Suite User Guide: Dynamic Function eXchange, Xilinx, Inc., 2100 Logic Drive, San Jose, CA 95124, June 2021.

● Motivation ● Approach ● Floorplan ● Evaluation ● Conclusion

y axis

x axis
1

2

3

4

5

6

5 10 15

22

Floorplan: Architecture Model

● Architecture model for a device

❑ Resource Vector <CLB, CLB, BRAM,…,CLB>

❑ Forbidden Region <X, Y, W, H> (<10,5,3,1>, …)

● Hierarchical PR[22]

❑ Xilinx Datacenter Platform provides Level-1 PR region

❑ Level-2 PR regions for PR-functions are defined

using Hierarchical PR

DSP TileBRAM TileCLB Tile

Forbidden

Region

Xilinx

Firmware

Level-2 PR

Region

Level-1 PR

Region

[22] UG909: Vivado Design Suite User Guide: Dynamic Function eXchange, Xilinx, Inc., 2100 Logic Drive, San Jose, CA 95124, June 2021.

● Motivation ● Approach ● Floorplan ● Evaluation ● Conclusion

y axis

x axis
1

2

3

4

5

6

5 10 15

23

Floorplan: Architecture Model

● Architecture model for a device

❑ Resource Vector <CLB, CLB, BRAM,…,CLB>

❑ Forbidden Region <X, Y, W, H> (<10,5,3,1>, …)

● Hierarchical PR[22]

❑ Xilinx Datacenter Platform provides Level-1 PR region

❑ Level-2 PR regions for PR-functions are defined

using Hierarchical PR

● Output Constraints

❑ Level-2 PR regions, <X, Y, W, H>

❑ XDC constraints file

DSP TileBRAM TileCLB Tile

Forbidden

Region

Xilinx

Firmware

Level-2 PR

Region

Level-1 PR

Region

[22] UG909: Vivado Design Suite User Guide: Dynamic Function eXchange, Xilinx, Inc., 2100 Logic Drive, San Jose, CA 95124, June 2021.

● Motivation ● Approach ● Floorplan ● Evaluation ● Conclusion

● Cost Function

❑ 𝑚𝑖𝑛: 𝛼 ∗
TotalLinkLength

MaxTotalLinkLength
+ 𝛽 ∗

TotalWastedResource

MaxTotalWastedResource
+ Overlapping (𝛼 + 𝛽 ≤ 0.5)

24

Floorplan: Simulated Annealing

Minimize the distance

between PR regions

Minimize the extra area

reserved in PR regions
Overlapping PR regions

is NOT allowed

extra area!

e.g.) need 4 CLB, 2 BRAM, 1 DSP

● Motivation ● Approach ● Floorplan ● Evaluation ● Conclusion

● Cost Function

❑ 𝑚𝑖𝑛: 𝛼 ∗
TotalLinkLength

MaxTotalLinkLength
+ 𝛽 ∗

TotalWastedResource

MaxTotalWastedResource
+ Overlapping (𝛼 + 𝛽 ≤ 0.5)

● Simulated Annealing
❑ Randomly selects an operator

❑ Randomly generates <X, Y>

❑ Greedily generates PR region for the operator

25

Floorplan: Simulated Annealing

<Example scenario of simulated annealing algorithm in floorplanning>

Minimize the distance

between PR regions

Minimize the extra area

reserved in PR regions
Overlapping PR regions

is NOT allowed

● Motivation ● Approach ● Floorplan ● Evaluation ● Conclusion 26

Outline

● Motivation

● Approach

● Floorplan

● Evaluation

● Conclusion

● Motivation ● Approach ● Floorplan ● Evaluation ● Conclusion 27

Evaluation: Platform

● Compile servers: Google Cloud Platform (GCP)

❑ 32 compute nodes, each with 8-thread, 2.8GHz Intel Xeon Cascade Lake Processors

❑ Parallel Task Manager Slurm

● HiPR uses Vitis 2021.1

❑ Alveo U50 Data Center Card with Virtex UltraScale+ XCU50

❑ 751K LUTs, 2,300 BRAM18, 5,936 DSPs

● Rosetta HLS Benchmark [1]

❑ 6 HLS Benchmark designs

❑ 3-D Rendering, Digit-Recognition, Spam-filter, Optical-flow, BNN, Face-detection

❑ We decompose each benchmark into a cluster of operators with latency insensitive streams

[1] Yuan Zhou et al. Rosetta: A Realistic High-Level Synthesis Benchmark Suite for Software-Programmable FPGAs. ISFPGA’18

● Motivation ● Approach ● Floorplan ● Evaluation ● Conclusion 28

Evaluation: Incremental Compile

● Assume all operators have to be recompiled

● HiPR takes 7-20 mins for incremental compile
while Vitis takes 48-82 mins (3-10x speedup)

● Motivation ● Approach ● Floorplan ● Evaluation ● Conclusion 29

Evaluation: Incremental Compile

● Assume all operators have to be recompiled

● HiPR takes 7-20 mins for incremental compile
while Vitis takes 48-82 mins (3-10x speedup)

● Median compile times are around 11 mins

● Motivation ● Approach ● Floorplan ● Evaluation ● Conclusion 30

Evaluation: Initial Compile

● For initial compile, HiPR takes more time (15-67%) than Vitis flow

● Usually done once and amortized over time

● As long as the interconnections between operators don’t change

Benchmark Vitis Flow HiPR Flow Overhead

3d-rendering 4264 7152 67%

Digit recognition 5173 6125 18%

Spam Filter 3942 4541 15%

Optical Flow 4139 6880 66%

Face Detect 6288 8851 40%

Binary NN 6584 9632 46%

TAB III: Initial Compile Times Comparisons (in seconds)

● Motivation ● Approach ● Floorplan ● Evaluation ● Conclusion 31

Evaluation: Performance

● Re-write the benchmark in form of
latency-insensitive style

● Smaller and localized blocks with
pipelined interconnect make it easier to
meet timing

● HiPR matches the clock frequency and
the application runtime of Vitis flow

Benchmark

Vitis Flow HiPR Flow

Freq

(MHz)

Runtime

(ms)

Freq

(MHz)

Runtime

(ms)

3d-rendering 200 2.2 200 1.6

Digit recognition 250 9.2 250 6.3

Spam Filter 300 18.6 300 20.0

Optical Flow 200 13.6 200 7.5

Face Detect 200 21.0 200 22.0

Binary NN 150 5250 150 4700

TAB IV: Performance Comparison: Vitis vs. HiPR

● Motivation ● Approach ● Floorplan ● Evaluation ● Conclusion 32

Outline

● Motivation

● Approach

● Floorplan

● Evaluation

● Conclusion

● Motivation ● Approach ● Floorplan ● Evaluation ● Conclusion 33

Conclusion

● HiPR: An open-source framework for HLS developers

(https://github.com/icgrp/hipr)

● Bridge the gap between HLS and PR technique by adding

a C-level PR pragma

● Decrease the incremental compile times from 48-82

minutes to 7-20 minutes (3-10x) without performance loss

https://github.com/icgrp/hipr

Q & A

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5: Outline
	Slide 6: Outline
	Slide 7: Motivation: Initial-compile & Incremental-compile by Vitis
	Slide 8: Motivation: Initial-compile & Incremental-compile by Vitis
	Slide 9: Motivation: Initial-compile & Incremental-compile by Vitis
	Slide 10: Outline
	Slide 11: HiPR (High-level Partial Reconfiguration): Compute Model
	Slide 12: HiPR (High-level Partial Reconfiguration): Compute Model
	Slide 13: HiPR (High-level Partial Reconfiguration): Compute Model
	Slide 14: HiPR Toolflow: Initial-Compile
	Slide 15: HiPR Toolflow: Initial-Compile
	Slide 16: HiPR Toolflow: Initial-Compile
	Slide 17: HiPR Toolflow: Initial-Compile
	Slide 18: HiPR Toolflow: Initial-Compile
	Slide 19: HiPR Toolflow: Incremental-Compile
	Slide 20: Outline
	Slide 21: Floorplan: Architecture Model
	Slide 22: Floorplan: Architecture Model
	Slide 23: Floorplan: Architecture Model
	Slide 24: Floorplan: Simulated Annealing
	Slide 25: Floorplan: Simulated Annealing
	Slide 26: Outline
	Slide 27: Evaluation: Platform
	Slide 28: Evaluation: Incremental Compile
	Slide 29: Evaluation: Incremental Compile
	Slide 30: Evaluation: Initial Compile
	Slide 31: Evaluation: Performance
	Slide 32: Outline
	Slide 33: Conclusion
	Slide 34

